Создание процессов и потоков
Создать процесс - это прежде всего означает создать описатель процесса, в качестве которого выступает одна или несколько информационных структур, содержащих все сведения о процессе, необходимые операционной системе для управления им. В число таких сведений могут входить, например, идентификатор процесса, данные о расположении в памяти исполняемого модуля, степень привилегированности процесса (приоритет и права доступа) и т. п. Создание описателя процесса знаменует собой появление в системе еще одного претендента на вычислительные ресурсы. Начиная с этого момента при распределении ресурсов ОС должна принимать во внимание потребности нового процесса.
Создание процесса включает также загрузку кодов и данных исполняемой программы данного процесса с диска в оперативную память. Для этого ОС должна обнаружить местоположение такой программы на диске, перераспределить оперативную память и выделить память исполняемой программе нового процесса. Затем необходимо считать программу в выделенные для нее участки памяти и, возможно, изменить параметры программы в зависимости от размещения в памяти. В системах с виртуальной памятью в начальный момент может загружаться только часть кодов и данных процесса, с тем чтобы «подкачивать» остальные по мере необходимости.
В многопоточной системе при создании процесса ОС создает для каждого процесса как минимум один поток выполнения. При создании потока так же, как и при создании процесса, операционная система генерирует специальную информационную структуру - описатель потока, который содержит идентификатор потока, данные о правах доступа и приоритете, о состоянии потока и другую информацию. В исходном состоянии поток (или процесс, если речь идет о системе, в которой понятие «поток» не определяется) находится в приостановленном состоянии. Момент выборки потока на выполнение осуществляется в соответствии с принятым в данной системе правилом предоставления процессорного времени и с учетом всех существующих в данный момент потоков и процессов. В случае если коды и данные процесса находятся в области подкачки, необходимым условием активизации потока процесса является также наличие места в оперативной памяти для загрузки его исполняемого модуля.
Во многих системах поток может обратиться к ОС с запросом на создание так называемых потоков-потомков. В разных ОС по-разному строятся отношения между потоками-потомками и их родителями. Например, в одних ОС выполнение родительского потока синхронизируется с его потомками, в частности, после завершения родительского потока ОС может снимать с выполнения всех его потомков. В других системах потоки-потомки могут выполняться асинхронно по отношению к родительскому потоку. Потомки, как правило, наследуют многие свойства родительских потоков. Во многих системах порождение потомков является основным механизмом создания процессов и потоков.
Рассмотрим в качестве примера создание процессов в популярной версии операционной системы UNIX System V Release 4. В этой системе потоки не поддерживаются, в качестве единицы управления и единицы потребления ресурсов выступает процесс.
При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса и контекст процесса.
Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск (образом процесса называется совокупность его кодов и данных).
Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов. В дескрипторе прямо или косвенно (через указатели на связанные с процессом структуры) содержится информация о состоянии процесса, о расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также о его итоговом значении - глобальном приоритете, об идентификаторе пользователя, создавшего процесс, о родственных процессах, о событиях, осуществления которых ожидает данный процесс, и некоторая другая информация.
Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: содержимое регистров процессора, коды ошибок выполняемых процессором системных вызовов, информация обо всех открытых данным процессом файлах и незавершенных операциях ввода-вывода и другие данные, характеризующие состояние вычислительной среды в момент прерывания. Контекст, так же, как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск.
Порождение процессов в системе UNIX происходит в результате выполнения системного вызова fork. ОС строит образ порожденного процесса, являющийся точной копией образа породившего процесса, то есть дублируются дескриптор, контекст и образ процесса. Сегмент данных и сегмент стека родительского процесса копируются на новое место, образуя сегменты данных и стека процесса-потомка.
После выполнения системного вызова fork оба процесса продолжают выполнение с одной и той же точки. Чтобы процесс мог опознать, является он родительским процессом или процессом-потомком, системный вызов fork возвращает в качестве своего значения в породивший процесс идентификатор порожденного процесса, а в порожденный процесс - NULL.
Таким образом, в UNIX порождение нового процесса происходит в два этапа - сначала создается копия процесса-родителя, затем у нового процесса производится замена кодового сегмента на заданный.
Вновь созданному процессу операционная система присваивает целочисленный идентификатор, уникальный на весь период функционирования системы.
Планирование и диспетчеризация потоков
На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. (В системе, не поддерживающей потоки, все сказанное ниже о планировании и диспетчеризации относится к процессу в целом.)
Переход от выполнения одного потока к другому осуществляется в результате планирования и диспетчеризации. Работа по определению того, в какой момент необходимо прервать выполнение текущего активного потока и какому потоку предоставить возможность выполняться, называется планированием. Планирование потоков осуществляется на основе информации, хранящейся в описателях процессов и потоков. При планировании могут приниматься во внимание приоритет потоков, время их ожидания в очереди, накопленное время выполнения, интенсивность обращений к вводу-выводу и другие факторы. ОС планирует выполнение потоков независимо от того, принадлежат ли они одному или разным процессам. Так, например, после выполнения потока некоторого процесса ОС может выбрать для выполнения другой поток того же процесса или же назначить к выполнению поток другого процесса.
Планирование потоков, по существу, включает в себя решение двух задач:
определение момента времени для смены текущего активного потока;
выбор для выполнения потока из очереди готовых потоков.
Существует множество различных алгоритмов планирования потоков, по-своему решающих каждую из приведенных выше задач. Алгоритмы планирования могут преследовать различные цели и обеспечивать разное качество мультипрограммирования. Например, в одном случае выбирается такой алгоритм планирования, при котором гарантируется, что ни один поток/процесс не будет занимать процессор дольше определенного времени, в другом случае целью является максимально быстрое выполнение «коротких» задач, а в третьем случае - преимущественное право занять процессор получают потоки интерактивных приложений. Именно особенности реализации планирования потоков в наибольшей степени определяют специфику операционной системы, в частности, является ли она системой пакетной обработки, системой разделения времени или системой реального времени.
В большинстве операционных систем универсального назначения планирование осуществляется динамически (on-line), то есть решения принимаются во время работы системы на основе анализа текущей ситуации. ОС работает в условиях неопределенности - потоки и процессы появляются в случайные моменты времени и также непредсказуемо завершаются. Динамические планировщики могут гибко приспосабливаться к изменяющейся ситуации и не используют никаких предположений о мультипрограммной смеси. Для того чтобы оперативно найти в условиях такой неопределенности оптимальный в некотором смысле порядок выполнения задач, операционная система должна затрачивать значительные усилия.
Другой тип планирования - статический - может быть использован в специализированных системах, в которых весь набор одновременно выполняемых задач определен заранее, например, в системах реального времени. Планировщик называется статическим (или предварительным планировщиком), если он принимает решения о планировании не во время работы системы, а заранее (off-line). Соотношение между динамическим и статическим планировщиками аналогично соотношению между диспетчером железной дороги, который пропускает поезда строго по предварительно составленному расписанию, и регулировщиком на перекрестке автомобильных дорог, не оснащенном светофорами, который решает, какую машину остановить, а какую пропустить, в зависимости от ситуации на перекрестке.
Результатом работы статического планировщика является таблица, называемая расписанием, в которой указывается, какому потоку/процессу, когда и на какое время должен быть предоставлен процессор. Накладные расходы ОС на исполнение расписания оказываются значительно меньшими, чем при динамическом планировании, и сводятся лишь к диспетчеризации потоков/процессов.
Диспетчеризация заключается в реализации найденного в результате планирования (динамического или статистического) решения, то есть в переключении процессора с одного потока на другой.
Диспетчеризация сводится к следующему:
· сохранение контекста текущего потока, который требуется сменить;
· загрузка контекста нового потока, выбранного в результате планирования;
· запуск нового потока на выполнение.
Поскольку операция переключения контекстов существенно влияет на производительность вычислительной системы, программные модули ОС выполняют диспетчеризацию потоков совместно с аппаратными средствами процессора.
В различных ОС можно встретить компоненты ОС, имеющие названия планировщик (scheduler) или диспетчер (dispatcher). He следует однозначно судить о функциональном назначении этих компонентов по их названиям, то есть считать, что планировщик выполняет планирование, а диспетчер - диспетчеризацию, в том смысле, в котором эти функции были определены выше. Чаще всего то и другое названия используются для обозначения компонентов, которые занимаются планированием.
Состояния потока
ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток может находиться в одном из трех основных состояний:
· выполнение - активное состояние потока, во время которого поток обладает всеми необходимыми ресурсами и непосредственно выполняется процессором;
· ожидание - пассивное состояние потока, находясь в котором поток заблокирован по своим внутренним причинам (ждет осуществления некоторого события, например завершения операции ввода-вывода, получения сообщения от другого потока или освобождения какого-либо необходимого ему ресурса);
· готовность - также пассивное состояние потока, но в этом случае поток заблокирован в связи с внешним по отношению к нему обстоятельством (имеет все требуемые для него ресурсы, готов выполняться, однако процессор занят выполнением другого потока).
Состояния выполнения и ожидания могут быть отнесены и к задачам, выполняющимся в однопрограммном режиме, а вот состояние готовности характерно только для режима мультипрограммирования.
В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятым в данной операционной системе.
Рассмотрим типичный граф состояния потока (рис. 3. 1). Только что созданный поток находится в состоянии готовности, он готов к выполнению и стоит в очереди к процессору. Когда в результате планирования подсистема управления потоками принимает решение об активизации данного потока, он переходит в состояние выполнения и находится в нем до тех пор, пока либо он сам освободит процессор, перейдя в состояние ожидания какого-нибудь события, либо будет принудительно «вытеснен» из процессора, например, вследствие исчерпания отведенного данному потоку кванта процессорного времени. В последнем случае поток возвращается в состояние готовности. В это же состояние поток переходит из состояния ожидания, после того как ожидаемое событие произойдет.
Поток завершен или ошибка
Поток выбран Поток ожидает завершения
на выполнение ввода-вывода
Поток вытеснен
Ввод-вывод завершен
Вновь созданный
поток
Рис.4. 1. Граф состояний потока в многозадачной среде
В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности - несколько потоков.
Потоки образуют очереди соответственно ожидающих и готовых потоков. Очереди потоков организуются путем объединения в списки описателей отдельных потоков. Таким образом, каждый описатель потока, кроме всего прочего, содержит по крайней мере один указатель на другой описатель, соседствующий с ним в очереди.
Такая организация очередей позволяет легко их переупорядочивать, включать и исключать потоки, переводить потоки из одного состояния в другое.
Вытесняющие и невытесняющие алгоритмы планирования
С самых общих позиций все множество алгоритмов планирования можно разделить на два класса: вытесняющие и невытесняющие алгоритмы планирования.
· Невытесняющие (non-preemptive) алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению поток.
· Вытесняющие (preemptive) алгоритмы - это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого потока принимается операционной системой, а не активной задачей.
Основным различием между вытесняющими и невытесняющими алгоритмами является степень централизации механизма планирования потоков. При вытесняющем мультипрограммировании функции планирования потоков целиком сосредоточены в операционной системе и программист пишет свое приложение, не заботясь о том, что оно будет выполняться одновременно с другими задачами. При этом операционная система выполняет следующие функции: определяет момент снятия с выполнения активного потока, запоминает его контекст, выбирает из очереди готовых потоков следующий, запускает новый поток на выполнение, загружая его контекст.
При невытесняющем мультипрограммировании механизм планирования распределен между операционной системой и прикладными программами. Прикладная программа, получив управление от операционной системы, сама определяет момент завершения очередного цикла своего выполнения и только затем передает управление ОС с помощью какого-либо системного вызова. ОС формирует очереди потоков и выбирает в соответствии с некоторым правилом (например, с учетом приоритетов) следующий поток на выполнение. Такой механизм создает проблемы как для пользователей, так и для разработчиков приложений. Для пользователей это означает, что управление системой теряется на произвольный период времени, который определяется приложением (а не пользователем). Если приложение тратит слишком много времени на выполнение какой-либо работы, например на форматирование диска, пользователь не может переключиться с этой задачи на другую задачу, например на текстовый редактор, в то время как форматирование продолжалось бы в фоновом режиме. Поэтому разработчики приложений для операционной среды с невытесняющей многозадачностью вынуждены, возлагая на себя часть функций планировщика, создавать приложения так, чтобы они выполняли свои задачи небольшими частями. Программист должен обеспечить «дружественное» отношение своей программы к другим выполняемым одновременно с ней программам. Для этого в программе должны быть предусмотрены частые передачи управления операционной системе. Крайним проявлением «не дружественности» приложения является его зависание, которое приводит к общему краху системы. В системах с вытесняющей многозадачностью такие ситуации, как правило, исключены, так как центральный планирующий механизм имеет возможность снять зависшую задачу с выполнения.
Алгоритмы планирования, основанные на квантовании
В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени - квант.
Смена активного потока происходит, если:
· поток завершился и покинул систему;
· произошла ошибка;
· поток перешел в состояние ожидания;
· исчерпан квант процессорного времени, отведенный данному потоку.
Поток, который исчерпал свой квант, переводится в состояние готовности и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый поток из очереди готовых.
Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными.
Если квант короткий, то суммарное время, которое проводит поток в ожидании процессора, прямо пропорционально времени, требуемому для его выполнения (то есть времени, которое потребовалось бы для выполнения этого потока при монопольном использовании вычислительной системы).
Чем больше квант, тем выше вероятность того, что потоки завершатся в результате первого же цикла выполнения, и тем менее явной становится зависимость времени ожидания потоков от их времени выполнения. При достаточно большом кванте алгоритм квантования вырождается в алгоритм последовательной обработки, присущий однопрограммным системам, при котором время ожидания задачи в очереди вообще никак не зависит от ее длительности. Кванты, выделяемые одному потоку, могут быть фиксированной величины, а могут и изменяться в разные периоды жизни потока. Пусть, например, первоначально каждому потоку назначается достаточно большой квант, а величина каждого следующего кванта уменьшается до некоторой заранее заданной величины. В таком случае преимущество получают короткие задачи, которые успевают выполняться в течение первого кванта, а длительные вычисления будут проводиться в фоновом режиме. Можно представить себе алгоритм планирования, в котором каждый следующий квант, выделяемый определенному потоку, больше предыдущего. Такой подход позволяет уменьшить накладные расходы на переключение задач в том случае, когда сразу несколько задач выполняют длительные вычисления.
Многозадачные ОС теряют некоторое количество процессорного времени для выполнения вспомогательных работ во время переключения контекстов задач. При этом запоминаются и восстанавливаются регистры, флаги и указатели стека, а также проверяется статус задач для передачи управления. Затраты на эти вспомогательные действия не зависят от величины кванта времени, поэтому чем больше квант, тем меньше суммарные накладные расходы, связанные с переключением потоков.
В алгоритмах, основанных на квантовании, какую бы цель они не преследовали (предпочтение коротких или длинных задач, минимизация накладных расходов, связанных с переключениями), не используется никакой предварительной информации о задачах. При поступлении задачи на обработку ОС не имеет никаких сведений о том, является ли она короткой или длинной, насколько интенсивными будут ее запросы к устройствам ввода-вывода, насколько важно ее быстрое выполнение и т. д. Дифференциация обслуживания при квантовании базируется на «истории существования» потока в системе.
Алгоритмы планирования, основанные на приоритетах
Другой важной концепцией, лежащей в основе многих вытесняющих алгоритмов планирования, является приоритетное обслуживание. Приоритетное обслуживание предполагает наличие у потоков некоторой изначально известной характеристики - приоритета, на основании которой определяется порядок их выполнения. Приоритет - это число, характеризующее степень привилегированности потока при использовании ресурсов вычислительной машины, в частности, процессорного времени: чем выше приоритет, тем выше привилегии, тем меньше времени будет проводить поток в очередях.
Приоритет может выражаться целым или дробным, положительным или отрицательным значением. В некоторых ОС принято считать, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В других системах, наоборот, чем меньше число, тем выше приоритет. В большинстве операционных систем, поддерживающих потоки, приоритет потока непосредственно связан с приоритетом процесса, в рамках которого выполняется данный поток. Приоритет процесса назначается операционной системой при его создании.
Во многих ОС предусматривается возможность изменения приоритетов в течение жизни потока. Изменение приоритета может происходить по инициативе самого потока, когда он обращается с соответствующим вызовом к операционной системе, или по инициативе пользователя, когда он выполняет соответствующую команду. Кроме того, ОС сама может изменять приоритеты потоков в зависимости от ситуации, складывающейся в системе. В последнем случае приоритеты называются динамическими в отличие от неизменяемых, фиксированных, приоритетов.
От того, какие приоритеты назначены потокам, существенно зависит эффективность работы всей вычислительной системы. В современных ОС во избежание разбалансировки системы, которая может возникнуть при неправильном назначении приоритетов, возможности пользователей влиять на приоритеты процессов и потоков стараются ограничивать. При этом обычные пользователи, как правило, не имеют права повышать приоритеты своим потокам, это разрешено делать (да и то в определенных пределах) только администраторам. В большинстве же случаев ОС присваивает приоритеты потокам по умолчанию. В качестве примера рассмотрим схему назначения приоритетов потокам, принятую в операционной системе Windows NT (рис. 3. 2). В системе определены 32 уровня приоритетов и два класса потоков - потоки реального времени и потоки с переменными приоритетами. Диапазон от 1 до 15 включительно отведен для потоков с переменными приоритетами, а от 16 до 31 - для более критичных ко времени потоков реального времени (приоритет 0 зарезервирован для системных целей).
Потоки с переменным приоритетом Потоки реального времени
Динамический приоритет
Базовый приоритет
потоков процесса
Базовый
приоритет
процесса
0 6 8 10 15 31
Рис. 3. 2. Схема назначения приоритетов в Windows NT
При создании процесс в зависимости от класса получает по умолчанию базовый приоритет в верхней или нижней части диапазона. Базовый приоритет процесса в дальнейшем может быть повышен или понижен операционной системой. Первоначально поток получает значение базового приоритета из диапазона базового приоритета процесса, в котором он был создан. Пусть, например, значение базового приоритета некоторого процесса равно К. Тогда все потоки данного процесса получат базовые приоритеты из диапазона [К-2, К+2]. Отсюда видно, что, изменяя базовый приоритет процесса, ОС может влиять на базовые приоритеты его потоков.
В Windows NT с течением времени приоритет потока, относящегося к классу потоков с переменными приоритетами, может отклоняться от базового приоритета потока, причем эти изменения могут быть не связаны с изменениями базового приоритета процесса. ОС может повышать приоритет потока (который в этом случае называется динамическим) в тех случаях, когда поток не полностью использовал отведенный ему квант, или понижать приоритет, если квант был использован полностью. ОС наращивает приоритет дифференцированно в зависимости от того, какого типа событие не дало потоку полностью использовать квант. В частности, ОС повышает приоритет в большей степени потокам, которые ожидают ввода с клавиатуры (интерактивным приложениям), и в меньшей степени - потокам, выполняющим дисковые операции. Именно на основе динамических приоритетов осуществляется планирование потоков. Начальной точкой отсчета для динамического приоритета является значение базового приоритета потока. Значение динамического приоритета потока ограничено снизу его базовым приоритетом, верхней же границей является нижняя граница диапазона приоритетов реального времени.
В современных ОС существуют две разновидности приоритетного планирования: обслуживание с относительными приоритетами и обслуживание с абсолютными приоритетами.
В обоих случаях выбор потока на выполнение из очереди готовых осуществляется одинаково: выбирается поток, имеющий наивысший приоритет. Однако проблема определения момента смены активного потока решается по-разному. В системах с относительными приоритетами активный поток выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидания (или же произойдет ошибка, или поток завершится).
В системах с абсолютными приоритетами выполнение активного потока прерывается, кроме указанных выше причин, еще при одном условии: если в очереди готовых потоков появился поток, приоритет которого выше приоритета активного потока. В этом случае прерванный поток переходит в состояние готовности.
В системах, в которых планирование осуществляется на основе относительных приоритетов, минимизируются затраты на переключения процессора с одной работы на другую. С другой стороны, здесь могут возникать ситуации, когда одна задача занимает процессор долгое время. Ясно, что для систем разделения времени и реального времени такая дисциплина обслуживания не подходит: интерактивное приложение может ждать своей очереди часами, пока вычислительной задаче не потребуется ввод-вывод. А вот в системах пакетной обработки (в том числе известной ОС OS/360) относительные приоритеты используются широко.
В системах с абсолютными приоритетами время ожидания потока в очередях может быть сведено к минимуму, если ему назначить самый высокий приоритет. Такой поток будет вытеснять из процессора все остальные потоки (кроме потоков, имеющих такой же наивысший приоритет). Это делает планирование на основе абсолютных приоритетов подходящим для систем управления объектами, в которых важна быстрая реакция на событие.
Смешанные алгоритмы планирования
Во многих операционных системах алгоритмы планирования построены с использованием как концепции квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора потока из очереди готовых определяется приоритетами потоков. Именно так реализовано планирование в системе Windows NT, в которой квантование сочетается с динамическими абсолютными приоритетами. На выполнение выбирается готовый поток с наивысшим приоритетом. Ему выделяется квант времени. Если во время выполнения в очереди готовых появляется поток с более высоким приоритетом, то он вытесняет выполняемый поток. Вытесненный поток возвращается в очередь готовых, причем он становится впереди всех остальных потоков, имеющих такой же приоритет.
Рассмотрим более подробно алгоритм планирования в операционной системе UNIX System V Release 4. В этой ОС понятие «поток» отсутствует, и планирование осуществляется на уровне процессов. В системе UNIX System V Release 4 реализована вытесняющая многозадачность, основанная на использовании приоритетов и квантования.
Каждый процесс в зависимости от задачи, которую он решает, относится к одному из трех определенных в системе приоритетных классов: классу реального времени, классу системных процессов или классу процессов разделения времени. Назначение и обработка приоритетов выполняются для разных классов по-разному. Процессы системного класса, зарезервированные для ядра, используют стратегию фиксированных приоритетов. Уровень приоритета процессу назначается ядром и никогда не изменяется.
Процессы реального времени также используют стратегию фиксированных приоритетов, но пользователь может их изменять. Так как при наличии готовых к выполнению процессов реального времени другие процессы не рассматриваются, то процессы реального времени надо тщательно проектировать, чтобы они не захватывали процессор на слишком долгое время. Характеристики планирования процессов реального времени включают две величины: уровень глобального приоритета и квант времени. Для каждого уровня приоритета по умолчанию имеется своя величина кванта времени. Процессу разрешается захватывать процессор на указанный квант времени, а по его истечении планировщик снимает процесс с выполнения.
Процессы разделения времени были до появления UNIX System V Release 4 единственным классом процессов, и по умолчанию UNIX System V Release 4 назначает новому процессу именно этот класс. Состав класса процессов разделения времени наиболее неопределенный и часто меняющийся в отличие от системных процессов и процессов реального времени. Для справедливого распределения времени процессора между процессами в этом классе используется стратегия динамических приоритетов. Величина приоритета, назначаемого процессам разделения времени, вычисляется пропорционально значениям двух составляющих: пользовательской части и системной части. Пользовательская часть приоритета может быть изменена администратором и владельцем процесса, но в последнем случае только в сторону его снижения.
Системная составляющая позволяет планировщику управлять процессами в зависимости от того, как долго они занимают процессор, не уходя в состояние ожидания. У тех процессов, которые потребляют большие периоды процессорного времени без ухода в состояние ожидания, приоритет снижается, а у тех процессов, которые часто уходят в состояние ожидания после короткого периода использования процессора, приоритет повышается. Таким образом, процессам, ведущим себя не «по-джентельменски», дается низкий приоритет. Это означает, что они реже выбираются для выполнения. Это ущемление в правах компенсируется тем, что процессам с низким приоритетом даются большие кванты времени, чем процессам с высокими приоритетами. Таким образом, хотя низкоприоритетный процесс и не работает так часто, как высокоприоритетный, но зато, когда он наконец выбирается для выполнения, ему отводится больше времени.
Дата добавления: 2018-11-25; просмотров: 557;