Геометрическое представление математических моделей

Лекция 2
Геометрически математическая модель может быть представлена как некоторая поверхность отклика, соответствующая расположению точек W = W(x) в k-мерном факторном пространстве Х.

Наглядно можно представить себе только одномерную и двухмерную поверхности отклика, причем в последнем случае удобно пользоваться топографическим способом изображения рельефа поверхности с помощью линий уровня (изолиний), построенных в двумерном факторном пространстве Х. (Рис. 1.4).

 
 

 


Рис. 1.4

Область, в которой определена поверхность отклика, называется областью определения Х*.

Эта область составляет, как правило, лишь часть полного факторного пространства Х (Х* Ì Х) и выделяется с помощью ограничений, наложенных на управляющие переменные xi , записанных в виде равенств

xi = Ci , i = 1,…, m;

fj(x) = Cj , j = 1,…, l

или неравенств

xi min £ xi £ xi max , i = 1,…, k;

fj(x) £ Cj , j = 1,…, n,

При этом функции fj(x) могут зависеть как одновременно от всех переменных, так и от некоторой их части.

Ограничения типа неравенств характеризуют или физические ограничения на процессы в изучаемом объекте (например, ограничения температуры), или технические ограничения, связанные с условиями работы объекта (например, предельная скорость резания).

Возможности исследования моделей существенно зависят от свойств (рельефа) поверхности отклика, в частности, от количества имеющихся на ней «вершин» и ее контрастности.

Количество вершин (впадин) определяет модальность поверхности отклика.

Если в области определения на поверхности отклика имеется одна вершина (впадина), модель называется унимодальной.

Характер изменения функции при этом может быть различным (Рис. 1.5).

 

W W   W  
x* x x* x x* x

а б в

Рис. 1.5

Модель может иметь разрывы первого рода (см. рис. 1.5. а). Непрерывная унимодальная модель может иметь точки разрыва производной – разрывы второго рода (см. рис. 1.5. б). На рис. 1.5 в показана непрерывно-дифференцируемая унимодальная модель.

Для всех трех случаев, представленных на рис. 1.5, выполняется общее требование унимодальности:

Если W(x*) = extr W, то из условия х1 < x2 < x* (x1 > x2 > x*) следует
W(x1) < W(x2) < W(x*) , если extr – максимум, или W(x1) > W(x2) > W(x*) , если extr – минимум, то есть, по мере удаления от экстремальной точки значение функции W(x) непрерывно падает (растет).

Наряду с унимодальными бывают полимодальные модели (Рис. 1.6).

 
 


W   x2   X1* X2*    
  x1* x2* x3* x   x1  

 

Рис. 1.6

Другим важным свойством поверхности отклика является ее контрастность, показывающая чувствительность результирующей функции к изменению факторов. Контрастность характеризуется величинами производных. Продемонстрируем характеристики контрастности на примере двумерной поверхности отклика (Рис. 1.7). Точка а расположена на «склоне», характеризующем равную контрастность по всем переменным хi (i=1,2); точка b расположена в «овраге», в котором различная контрастность по различным переменным (имеем плохую обусловленность функции); точка с расположена на «плато», на котором низкая контрастность по всем переменным хi говорит о близости экстремума.

 

 








Дата добавления: 2018-09-24; просмотров: 867;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.