Изменение энтропии в биологических системах

Согласно второму закону термодинамики, все самопроизвольные процессы протекают с конечной скоростью, и энтропия при этом повышается. В живых организмах происходят процессы, сопровождающиеся уменьшением энтропии системы. Так, с момента оплодотворения и образования зиготы, организация живой системы непрерывно усложняется. В нем синтезируются сложные молекулы, делятся, растут, дифференцируются клетки, образуются ткани, органы. Все процессы роста и развития в эмбриогенезе и онтогенезе ведут к большей упорядоченности системы, т. е происходят с понижением энтропии. Как видим, возникает противоречие между вторым законом термодинамики и существованием живых систем. Поэтому до недавнего времени считали, что второй закон термодинамики неприменим для биологических систем. Однако, в работах И. Пригожина, Д. Виама, Д. Онзагера были разработаны теоретические представления, которые устранили это противоречие.

В соответствии с положениями термодинамики, биологическая система в процессе функционирования проходит через ряд неравновесных состояний, что сопровождается соответствующими изменениями термодинамических параметров этой системы. Поддержание неравновесных состояний в открытых системах возможно лишь за счет создания в них соответствующих потоков вещества и энергии. Таким образом, живым системам присущи неравновесные состояния, параметры которых есть функция времени.

Например, для термодинамических потенциалов G и F это означает, что G = G (T, p, t); F = F (T, V, t).

Рассмотрим энтропию открытой термодинамической системы. Полное изменение энтропии в живых системах (dS) складывается из изменения энтропии в результате протекания в системе необратимых процессов (diS) и изменения энтропии за счет процессов обмена системы с внешней средой (deS).

dS = diS + deS

В этом состоит исходное положение термодинамики необратимых процессов.

Изменение энтропии diS, обусловленное необратимыми процессами, согласно второму закону термодинамики, может иметь только положительное значение (diS> 0). Величина deS может принимать любые значения. Рассмотрим все возможные случаи.

1. Если deS = 0, тогда dS = diS > 0. Это классическая изолированная система, которая не обменивается с внешней средой ни веществом, ни энергией. В этой системе протекают только самопроизвольные процессы, которые приведут к термодинамическому равновесию, т.е. к смерти биологической системы.

2. Если deS>0, тогда dS = diS + deS > 0. В этом случае энтропия открытой термодинамической системы увеличивается в результате взаимодействия с внешней средой. Это означает, что в живой системе непрерывно идут процессы распада, приводящие к нарушению структуры и, в конечном счете, к смерти живого организма.

3. Если deS< 0, изменение энтропии открытой системы зависит от соотношения абсолютных значений deS и diS.

а) ú deSú > ú di , тогда общее изменение энтропии dS = diS + deS < 0. Это означает усложнение организации системы, синтез новых сложных молекул, образование клеток, развитие тканей, органов и рост организма в целом. Примером такой термодинамической системы может служить молодой растущий организм.

б) údeSú < ú di, тогда общее изменение энтропии dS = diS + deS> 0. В этом случае процессы распада в живых системах преобладают над процессами синтеза новых соединений. Такое положение имеет место в стареющих и больных клетках, организмах. Энтропия таких систем будет повышаться до максимального значения в равновесном состоянии, что означает дезорганизацию и смерть биологических структур.

в) ú deSú = ú diSú , тогда энтропия открытой системы не изменяется dS = diS + deS = 0 , т.е. diS = - deS. Это условие стационарного состояния открытой термодинамической системы. В этом случае, увеличение энтропии системы за счет протекающих в ней необратимых процессов компенсируется притоком отрицательной энтропии при взаимодействии системы с внешней средой. Таким образом, поток энтропии может быть положительным и отрицательным. Положительная энтропия есть мера превращения упорядоченной формы движения в неупорядоченную форму. Приток отрицательной энтропии свидетельствует о протекании синтетических процессов, повышающих уровень организации термодинамической системы.

В процессе функционирования открытых (биологических) систем значение энтропии изменяется в определенных пределах. Так, в процессе роста и развития организма, болезни, старении, изменяются количественные показатели термодинамических параметров, в т.ч. и энтропии. Универсальным показателем, характеризующим состояние открытой системы при ее функционировании, является скорость изменения суммарной энтропии. Скорость изменения энтропии в живых системах определяется суммой скорости возрастания энтропии за счет протекания необратимых процессов и скорости изменения энтропии за счет взаимодействия системы с внешней средой.

dS/dt = diS/dt + deS/dt

Это выражение есть формулировка второго закона термодинамики для живых систем. В стационарном состоянии энтропия не изменяется, т. е. dS/dt = 0. Отсюда следует, что условие стационарного состояния удовлетворяет следующему выражению: diS/dt = - deS/dt. В стационарном состоянии скорость повышения энтропии в системе равна скорости притока энтропии из внешней среды. Таким образом, в отличие от классической термодинамики, термодинамика неравновесных процессов рассматривает изменение энтропии во времени. В реальных условиях развития организмов, уменьшение энтропии или сохранение его постоянного значения происходит за счет того, что во внешней среде идут сопряженные процессы с образованием положительной энтропии.

Энергетический обмен живых организмов на Земле схематично можно представить как образование в процессе фотосинтеза молекул углеводов из углекислого газа и воды, с последующим окислением углеводов в процессе дыхания. Именно такая схема энергетического обмена обеспечивает существование всех форм жизни в биосфере: как отдельных организмов - звеньев в круговороте энергии, так и жизни на Земле в целом. С этой точки зрения, уменьшение энтропии живых систем в процессе жизнедеятельности обусловлено, в конечном счете, поглощением квантов света фотосинтезирующими организмами. Уменьшение энтропии в биосфере происходит за счет образования положительной энтропии при протекании ядерных реакций на Солнце. В целом, энтропия Солнечной системы непрерывно повышается. Этот принцип относится и к отдельным организмам, для которых поступление питательных веществ, несущих приток отрицательной энтропии, всегда сопряжено с продуцированием положительной энтропии в других участках внешней среды. Точно так же уменьшение энтропии в той части клетки, где идут синтетические процессы, происходит за счет повышения энтропии в других частях клетки или организма. Таким образом, суммарное изменение энтропии в системе “живой организм - внешняя среда” всегда положительно.



 

<== предыдущая лекция | следующая лекция ==>
Живые системы с позиций термодинамики | Устойчивость стационарного состояния. Теорема


Дата добавления: 2018-03-02; просмотров: 540; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2018 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.