Свойства основной задачи линейного программирования. Геометрическое истолкование задачи линейного программирования

Рассмотрим основную задачу линейного программирования. Она состоит в определении максимального значения функции при условиях

Перепишем эту задачу в векторной форме: найти максимум функции

F=CX (15)

при условиях

(16)

(17)

где , CX — скалярное произведение; и m-мерные вектор-столбцы, составленные из коэффициентов при неизвестных и свободных членах системы уравнений задачи:

Определение 1.7. План называется опорным планом, основной задачи линейного программирования, если система векторов , входящих в разложение (16) с положительными коэффициентами линейно независима.

Так как векторы являются m-мерными, то из определения опорного плана следует, что число его положительных компонент не может быть больше, чем т.

Определение 1.8. Опорный план называется невырожденным, если он содержит ровно т положительных компонент, в противном случае он называется вырожденным.

Свойства основной задачи линейного программирования (15) - (17) тесным образом связаны со свойствами выпуклых множеств.

Определение 1.9. Пусть произвольные точки евклидова пространства . Выпуклой линейной комбинацией этих точек называется сумма где — произвольные неотрицательные числа, сумма которых равна 1:

Определение 1.10. Множество называется выпуклым, если вместе с любыми двумя своими точками оно содержит и их произвольную выпуклую линейную комбинацию.

Определение 1.11. Точка Х выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации каких-нибудь двух других различных точек данного множества.

Теорема 1.1. Множество планов основной задачи линейного программирования является выпуклым (если оно не пусто).

Определение 1.12. Непустое множество планов основной задачи линейного программирования называется многогранником решений, а всякая угловая точка многогранника решений — вершиной.

Теорема 1.2. Если основная задача линейного программирования имеет оптимальный план, то максимальное значение целевая функция задачи принимает в одной из вершин многогранника решений. Если максимальное значение целевая функция задачи принимает более чем в одной вершине, то она принимает его во всякой точке, являющейся выпуклой линейной комбинацией этих вершин.

Теорема 1.3. Если система векторов в разложении (16) линейно независима и такова, что

(18)

где все то точка является вершиной многогранника решений.

Теорема 1.4. Если вершина многогранника решений, то векторы , соответствующие положительным в разложении (16), линейно независимы.

Сформулированные теоремы позволяют сделать следующие выводы.

Непустое множество планов основной задачи линейного программирования образует выпуклый многогранник. Каждая вершина этого многогранника определяет опорный план. В одной из вершин многогранника решений (т. е. для одного из опорных планов) значение целевой функции является максимальным (при условии, что функция ограничена сверху на множестве планов). Если максимальное значение функция принимает более чем в одной вершине, то это же значение она принимает в любой точке, являющейся выпуклой линейной комбинацией данных вершин.

Вершину многогранника решений, в которой целевая функция принимает максимальное значение, найти сравнительно просто, если задача, записанная в форме стандартной, содержит не более двух переменных или задача, записанная в форме основной, содержит не более двух свободных переменных, т. е. , где п — число переменных, r — ранг матрицы, составленной из коэффициентов в системе ограничений задачи.

Найдем решение задачи, состоящей в определении максимального значения функции

(19)

при условиях

(20)

(21)

Каждое из неравенств (20), (21) системы ограничений задачи геометрически определяет полуплоскость соответственно с граничными прямыми и . В том случае, если система неравенств (20), (21) совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей — выпуклое, то областью допустимых решений задачи (19) —(21) является выпуклое множество, которое называется многоугольником решений (введенный ранее термин «многогранник решений» обычно употребляется, если ). Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим линию уровня (где h — некоторая постоянная), проходящую через многоугольник решений, и будем передвигать ее в направлении вектора до тех пор, пока она не пройдет через последнюю ее общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

Заканчивая рассмотрение геометрической интерпретации задачи (19)-(21), отметим, что при нахождении ее решения могут встретиться случаи, изображенные на рис. 1 - 4. Рис. 1 характеризует такой случай, когда целевая функция принимает максимальное значение в единственной точке А. Из рис. 2 видно, что максимальное значение целевая функция принимает в любой точке отрезка АВ. На рис. 3 изображен случай, когда целевая функция не ограничена сверху на множестве допустимых решений, а на рис. 4 — случай, когда система ограничений задачи несовместна.

Рис. 1 Рис. 2

Рис. 3 Рис. 4

Отметим, что нахождение минимального значения линейной функции при данной системе ограничений отличается от нахождения ее максимального значения при тех же ограничениях лишь тем, что линия уровня передвигается не в направлении вектора а в противоположном направлении. Таким образом, отмеченные выше случаи, встречающиеся при нахождении максимального значения целевой функции, имеют место и при определении ее минимального значения.

Итак, нахождение решения задачи линейного программирования (19) - (21) на основе ее геометрической интерпретации включает следующие этапы:

1. Строят прямые, уравнения которых, получаются в результате замены в ограничениях (20) и (21) знаков неравенств на знаки точных равенств.

2. Находят полуплоскости, определяемые каждым из ограничений задачи.

3. Находят многоугольник решений.

4. Строят вектор .

5. Строят прямую , проходящую через многоугольник решений.

6. Передвигают прямую в направлении вектора , в результате чего-либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве планов.

7. Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.

1.6. Для производства двух видов изделий А и В предприятие использует три вида сырья. Нормы расхода сырья каждого вида на изготовление единицы продукции данного вида приведены в таблице 2. В ней же указаны прибыль от реализации одного изделия каждого вида и общее количество сырья данного вида, которое может быть использовано предприятием.

Таблица 2

Вид сырья Нормы расхода сырья (кг) на одно изделие Общее количество сырья (кг)
  А В
I II III
Прибыль от реализации одного изделия (руб.)  

Учитывая, что изделия А и В могут производиться в любых соотношениях (сбыт обеспечен), требуется составить такой план их выпуска, при котором прибыль предприятия от реализации всех изделий является максимальной,

Решение. Предположим, что предприятие изготовит изделий вида А и изделий вида В. Поскольку производство продукции ограничено имеющимся в распоряжении предприятия сырьем каждого вида и количество изготовляемых изделий не может быть отрицательным, должны выполняться неравенства

Общая прибыль от реализации изделий вида А и изделий вида В составит

Таким образом, мы приходим к следующей математической задаче: среди всех неотрицательных решений данной системы линейных неравенств требуется найти такое, при котором функция F принимает максимальное значение.

Найдем решение сформулированной задачи, используя ее геометрическую интерпретацию. Сначала определим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств и найдем соответствующие прямые:

Эти прямые изображены на рис. 5. Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой — нет. Чтобы определить искомую полуплоскость, нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей, и проверить, удовлетворяют ли ее координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка, в противном случае — другая полуплоскость.

Найдем, например, полуплоскость, определяемую неравенством Для этого, построив прямую (на рис. 5 эта прямая I), возьмем какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например точку О(0; 0). Координаты этой точки удовлетворяют неравенству значит, полуплоскость, которой принадлежит точка О(0; 0), определяется неравенством Это и показано стрелками на рис. 5.

Рис. 5

Пересечение полученных полуплоскостей и определяет многоугольник решений данной задачи.

Как видно из рис. 5, многоугольником решений является пятиугольник OABCD. Координаты любой точки, принадлежащей этому пятиугольнику, удовлетворяют данной системе неравенств и условию неотрицательности переменных. Поэтому сформулированная задача будет решена, если мы сможем найти точку, принадлежащую пятиугольнику OABCD, в которой функция F принимает максимальное значение. Чтобы найти указанную точку, построим вектор и прямую где h — некоторая постоянная такая, что прямая имеет общие точки с многоугольником решений. Положим, например, h = 480 и построим прямую (рис. 5).

Если теперь взять какую-нибудь точку, принадлежащую построенной прямой и многоугольнику решений, то ее координаты определяют такой план производства изделий А и В, при котором прибыль от их реализации равна 480 руб. Далее, полагая h равным некоторому числу, большему чем 480, мы будем получать различные параллельные прямые. Если они имеют общие точки с многоугольником решений, то эти точки определяют планы производства изделий А и В, при которых прибыль от их реализации превзойдет 480 руб.

Перемещая построенную прямую в направлении вектора видим, что последней общей точкой ее с многоугольником решений задачи служит точка В. Координаты этой точки и определяют план выпуска изделий А и В, при котором прибыль от их реализации является максимальной.

Найдем координаты точки В как точки пересечения прямых II и III. Следовательно, ее координаты удовлетворяют уравнениям этих прямых

Решив эту систему уравнений, получим Следовательно, если предприятие изготовит 12 изделий вида А и 18 изделий вида В, то оно получит максимальную прибыль, равную

1.7. Найти максимум и минимум функции при условиях

Решение. Построим многоугольник решений. Для этого в неравенствах системы ограничений и условиях неотрицательности переменных знаки неравенств заменим на знаки точных равенств:

Построив полученные прямые, найдем соответствующие полуплоскости и их пересечение (рис. 6).

Как видно из рис. 6, многоугольником решений задачи является треугольник АВС. Координаты точек этого треугольника удовлетворяют условию неотрицательности и неравенствам системы ограничений задачи. Следовательно, задача будет решена, если среди точек треугольника АВС найти такие, в которых функция принимает максимальное и минимальное значения. Для нахождения этих точек построим прямую (число 4 взято произвольно) и вектор

 

 

Рис. 6

Передвигая данную прямую параллельно самой себе в направлении вектора видим, что ее последней общей точкой с многоугольником решений задачи является точка С. Следовательно, в этой точке функция F принимает максимальное значение. Так как С — точка пересечения прямых I и II, то ее координаты удовлетворяют уравнениям этих прямых:

Решив эту систему уравнений, получим Таким образом, максимальное значение функции

Для нахождения минимального значения целевой функции задачи передвигаем прямую в направлении, противоположном направлению вектора В этом случае, как видно из рис. 6, последней общей точкой прямой с многоугольником решений задачи является точка А. Следовательно, в этой точке функция F принимает минимальное значение. Для определения координат точки А решаем систему уравнений

откуда Подставляя найденные значения переменных в целевую функцию, получим

Симплекс метод

Решение любой задачи линейного программирования можно найти симплексным методом. Прежде чем применять указанный метод, следует записать исходную задачу в форме основной задачи линейного программирования, если она не имеет такой формы записи.

Симплексный метод решения задачи линейного программирования основан на пеереходе от одного опорного плана к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальный план и каждый ее опорный план является невырожденным). Указанный переход возможен, если известен какой-нибудь исходный опорный план. Рассмотрим задачу, для которой этот план можно непосредственно записать.

Пусть требуется найти максимальное значение функции

при условиях

Здесь и — заданные постоянные числа

Векторная форма данной задачи имеет следующий вид: найти максимум функции

(22)

при условиях

(23)

(24)

где

Так как

то по определению опорного плана является опорным планом данной задачи (последние компонент вектора Х равны нулю). Этот план определяется системой единичных векторов которые образуют базис m-мерного пространства. Поэтому каждый из векторов а также вектор могут быть представлены в виде линейной комбинации векторов данного базиса. Пусть

Положим Так как векторы единичные, то и а

Теорема 1.5 (признак оптимальности опорного плана). Опорный план задачи (22)-(24) является оптимальным, если для любого j

Теорема 1.6. Если для некоторого j=k и среди чисел нет положительных , то целевая функция (22) задачи (22)-(24) не ограничена на множестве ее планов.

Теорема 1.7. Если опорный план Х задачи (22)-(24) не вырожден и , но среди чисел аik есть положительные (не все ), то существует опорный план X' такой, что

Сформулированные теоремы позволяют проверить, является ли найденный опорный план оптимальным, и выявить целесообразность перехода к новому опорному плану.

Исследование опорного плана на оптимальность, а также дальнейший вычислительный процесс удобнее вести, если условия задачи и первоначальные данные, полученные после определения исходного опорного плана, записать так, как показано в таблице 3.

В столбце этой таблицы записывают коэффициенты при неизвестных целевой функции, имеющие те же индексы, что и векторы данного базиса.

В столбце записывают положительные компоненты исходного опорного плана, в нем же в результате вычислений получают положительные компоненты оптимального плана. Столбцы векторов представляют собой коэффициенты разложения этих векторов по векторам данного базиса.

В таблице 3 первые m строк определяются исходными данными задачи, а показатели -й строки вычисляют. В этой строке в столбце вектора записывают значение целевой функции, которое она принимает при данном опорном плане, а в столбце вектора значение

Значение находится как скалярное произведение вектора на вектор

Значение равно скалярному произведению вектора на вектор :

После заполнения таблицы 3 исходный опорный план проверяют на оптимальность. Для этого просматривают элементы -й строки таблицы. В результате может иметь место один из следующих трех случаев:

1) для , (при ). Поэтому в данном случае числа для всех j от 1 до n;

2) для некоторого j, и все соответствующие этому индексу величины

3) для некоторых индексов j, и для каждого такого j, по крайней мере, одно из чисел положительно.

Таблица 3

i Базис P0 ... ... ... ...
... ... ... ...
... ... ... ...

В первом случае на основании признака оптимальности исходный опорный план является оптимальным. Во втором случае целевая функция не ограничена сверху на множестве планов, а в третьем случае можно перейти от исходного плана к новому опорному плану, при котором значение целевой функции увеличится. Этот переход от одного опорного плана к другому осуществляется исключением из исходного базиса какого-нибудь из векторов и введением в него нового вектора. В качестве вектора, вводимого в базис, можно взять любой из векторов имеющий индекс j, для которого . Пусть, например, и решено ввести в базис вектор

Для определения вектора, подлежащего исключению из базиса, находят для всех Пусть этот минимум достигается при i=r. Тогда из базиса исключают вектор ,а число называют разрешающим элементом.

Столбец и строку, на пересечении которых находится разрешающий элемент, называют направляющими.

После выделения направляющей строки и направляющего столбца находят новый опорный план и коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану. Это легко реализовать, если воспользоваться методом Жордана—Гаусса. При этом можно показать, что положительные компоненты нового опорного плана вычисляются по формулам

(25)

а коэффициенты разложения векторов через векторы нового базиса, соответствующего новому опорному плану, — по формулам

(26)

После вычисления и согласно формулам (25) и (26) их значения заносят в табл. 4.

Таблица 4

i Базис P0 ... ... ... ...
... ... ... ...
... ... ... ...

Элементы -й строки этой таблицы могут быть вычислены либо по формулам

(27)

(28)

либо на основании их определения.

Наличие двух способов нахождения элементов -й строки позволяет осуществлять контроль правильности проводимых вычислений.

Из формулы (27) следует, что при переходе от одного опорного плана к другому наиболее целесообразно ввести в базис вектор , имеющий индекс j, при котором максимальным по абсолютной величине является число . Однако с целью упрощения вычислительного процесса в дальнейшем будем вектор, вводимый в базис, определять, исходя из максимальной абсолютной величины отрицательных чисел . Если же таких чисел несколько, то в базис будем вводить вектор, имеющий такой же индекс, как и максимальное из чисел , определяемых данными числами

Итак, переход от одного опорного плана к другому сводится к переходу от одной симплекс-таблицы к другой. Элементы новой симплекс-таблицы можно вычислить как с помощью рекуррентных формул (25)-(28), так и по правилам, непосредственно вытекающим из них. Эти правила состоят в следующем.

В столбцах векторов, входящих в базис, на пересечении строк и столбцов одноименных векторов проставляются единицы, а все остальные элементы данных столбцов полагают равными нулю.

Элементы векторов и в строке новой симплекс-таблицы, в которой записан вектор, вводимый в базис, получают из элементов этой же строки исходной таблицы делением их на величину разрешающего элемента. В столбце в строке вводимого вектора проставляют величину , где k — индекс вводимого вектора.

Остальные элементы столбцов вектора и новой симплекс-таблицы вычисляют по правилу треугольника. Для вычисления какого-нибудь из этих элементов находят три числа:

1) число, стоящее в исходной симплекс-таблице на месте искомого элемента новой симплекс-таблицы;

2) число, стоящее в исходной симплекс-таблице на пересечении строки, в которой находится искомый элемент новой симплекс-таблицы, и столбца, соответствующего вектору, вводимому в базис;

3) число, стоящее в новой симплекс-таблице на пересечении столбца, в котором стоит искомый элемент, и строки вновь вводимого в базис вектора (как отмечено выше, эта строка получается из строки исходной симплекс-таблицы делением ее элементов на разрешающий элемент).

Эти три числа образуют своеобразный треугольник, две вершины которого соответствуют числам, находящимся в исходной симплекс-таблице, а третья — числу, находящемуся в новой симплекс-таблице. Для определения искомого элемента новой симплекс-таблицы из первого числа вычитают произведение второго и третьего.

После заполнения новой симплекс-таблицы просматривают элементы -й строки. Если все , то новый опорный план является оптимальным. Если же среди указанных чисел имеются отрицательные, то, используя описанную выше последовательность действий, находят новый опорный план. Этот процесс продолжают до тех пор, пока либо не получают оптимальный план задачи, либо не устанавливают ее неразрешимость.

При нахождении решения задачи линейного программирования мы предполагали, что эта задача имеет опорные планы, и каждый такой план является невырожденным. Если же задача имеет вырожденные опорные планы, то на одной из итераций одна или несколько переменных опорного плана могут оказаться равными нулю. Таким образом, при переходе от одного опорного плана к другому значение функции может остаться прежним. Более того, возможен случай, когда функция сохраняет свое значение в течение нескольких итераций, а также возможен возврат к первоначальному базису. В последнем случае обычно говорят, что произошло зацикливание. Однако при решении практических задач этот случай встречается очень редко, поэтому мы на нем останавливаться не будем.

Итак, нахождение оптимального плана симплексным методом включает следующие этапы:

1. Находят опорный план.

2. Составляют симплекс-таблицу.

3. Выясняют, имеется ли хотя бы одно отрицательное число . Если нет, то найденный опорный план оптимален. Если же среди чисел имеются отрицательные, то либо устанавливают неразрешимость задачи, либо переходят к новому опорному плану.

4. Находят направляющие столбец и строку. Направляющий столбец определяется наибольшим по абсолютной величине отрицательным числом , а направляющая строка — минимальным из отношений компонент столбца вектора к положительным компонентам направляющего столбца.

5. По формулам (25) - (28) определяют положительные компоненты нового опорного плана, коэффициенты разложения векторов Pj по векторам нового базиса и числа , . Все эти числа записываются в новой симплекс-таблице.

6. Проверяют найденный опорный план на оптимальность. Если план не оптимален, и необходимо перейти к новому опорному плану, то возвращаются к этапу 4, а в случае получения оптимального плана или установления неразрешимости процесс решения задачи заканчивают.

1.8. Для изготовления различных изделий А, В и С предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия каждого вида, цена одного изделия А, В и С, а также общее количество сырья каждого вида, которое может быть использовано предприятием, приведены в таблице 5.

Таблица 5

Вид сырья Нормы затрат сырья (кг) на одно изделие Общее количество сырья (кг)
А В С
I II III
Цена одного изделия (руб.)  

Изделия А, В и С могут производиться в любых соотношениях (сбыт обеспечен), но производство ограничено выделенным предприятию сырьем каждого вида.

Составить план производства изделий, при котором общая стоимость всей произведенной предприятием продукции является максимальной.

Решение. Составим математическую модель задачи. Искомый выпуск изделий А обозначим через , изделий В —через , изделий С — через . Поскольку имеются ограничения на выделенный предприятию фонд сырья каждого вида, переменные должны удовлетворять следующей системе неравенств:

(29)

Общая стоимость произведенной предприятием продукции при условии выпуска изделий А, изделий В и изделий С составляет

(30)

По своему экономическому содержанию переменные могут принимать только лишь неотрицательные значения:

(31)

Таким образом, приходим к следующей математической задаче: среди всех неотрицательных решений системы неравенств (29) требуется найти такое, при котором функция (30) принимает максимальное значение.

Запишем эту задачу в форме основной задачи линейного программирования. Для этого перейдем от ограничений-неравенств к ограничениям-равенствам. Введем три дополнительные переменные, в результате чего ограничения запишутся в виде системы уравнений

Эти дополнительные переменные по экономическому смыслу означают не используемое при данном плане производства количество сырья того или иного вида. Например, это неиспользуемое количество сырья I вида.

Преобразованную систему уравнений запишем в векторной форме:

где

Поскольку среди векторов имеются три единичных вектора, для данной задачи можно непосредственно записать опорный план. Таковым является план Х=(0; 0; 0; 360; 192; 180), определяемый системой трехмерных единичных векторов которые образуют базис трехмерного векторного пространства.

Составляем симплексную таблицу для I итерации (таблица 6), подсчитываем значения и проверяем исходный опорный план на оптимальность:

Для векторов базиса

Как видно из таблицы 6, значения всех основных переменных равны нулю, а дополнительные переменные принимают свои значения в соответствии с ограничениями задачи. Эти значения переменных отвечают такому «плану», при котором ничего не производится, сырье не используется и значение целевой функции равно нулю (т. е. стоимость произведенной продукции отсутствует). Этот план, конечно, не является оптимальным.

Таблица 6

i Базис Сб P0
      P1 P2 Р3 p4 Р5 P6
P4 р5 p6 -9 -10 -16 0

Это видно и из 4-й строки таблицы 6, так как в ней имеется три отрицательных числа: и Отрицательные числа не только свидетельствуют о возможности увеличения общей стоимости производимой продукции, но и показывают, на сколько увеличится эта сумма при введении в план единицы того или другого вида продукции.

Так, число — 9 означает, что при включении в план производства одного изделия А обеспечивается увеличение выпуска продукции на 9 руб. Если включить в план производства по одному изделию В и С, то общая стоимость изготовляемой продукции возрастет соответственно на 10 и 16 руб. Поэтому с экономической точки зрения наиболее целесообразным является включение в план производства изделий С. Это же необходимо сделать и на основании формального признака симплексного метода, поскольку максимальное по абсолютной величине отрицательное число стоит в 4-й строке столбца вектора Р3. Следовательно, в базис введем вектор Р3. определяем вектор, подлежащий исключению из базиса. Для этого находим для , т. е.

Найдя число мы тем самым с экономической точки зрения определили, какое количество изделий С предприятие может изготовлять с учетом норм расхода и имеющихся объемов сырья каждого вида. Так как сырья данного вида соответственно имеется 360, 192 и 180 кг, а на одно изделие С требуется затратить сырья каждого вида соответственно 12, 8 и 3 кг, то максимальное число изделий С, которое может быть изготовлено предприятием, равно т. е. ограничивающим фактором для производства изделий С является имеющийся объем сырья II вида. С учетом его наличия предприятие может изготовить 24 изделия С. При этом сырье II вида будет полностью использовано.

Следовательно, вектор Р5 подлежит исключению из базиса. Столбец вектора Р3к 2-я строка являются направляющими. Составляем таблицу для II итерации (таблица 7).

Таблица 7

i Базис Сб Р0
      P1 P2 P3 p4 p5 Р6
P4 p3 p6 0 72 24 108 384 3/4 11/4 3 1/2 3/2 -2 0 -3/2 1/8 -3/8

Сначала заполняем строку вектора, вновь введенного в базис, т. е. строку, номер которой совпадает с номером направляющей строки. Здесь направляющей является 2-я строка. Элементы этой строки таблицы 7 получаются из соответствующих элементов таблицы 6 делением их на разрешающий элемент (т. е. на 8). При этом в столбце Сб записываем коэффициент , стоящий в столбце вводимого в базис вектора . Затем заполняем элементы столбцов для векторов, входящих в новый базис. В этих столбцах на пересечении строк и столбцов одноименных векторов проставляем единицы, а все остальные элементы полагаем равными нулю.

Для определения остальных элементов таблицы 7 применяем правило треугольника. Эти элементы могут быть вычислены и непосредственно по рекуррентным формулам.

Вычислим элементы таблицы 7, стоящие в столбце вектора Р0. Первый из них находится в 1-й строке этого столбца. Для его вычисления находим три числа:

1) число, стоящее в таблице 6 на пересечении столбца вектора Р0 и 1-й строки (360);

2) число, стоящее в таблице 6 на пересечении столбца вектора P3 и 1-й строки (12);

3) число, стоящее в таблице 7 на пересечении столбца вектора Р0 и 2-й строки (24).

Вычитая из первого числа произведение двух других, находим искомый элемент: 360 – 12 × 24=72; записываем его в 1-й строке столбца вектора Р0 таблице 7.

Второй элемент столбца вектора Р0 таблицы 7 был уже вычислен ранее. Для вычисления третьего элемента столбца вектора Р0 также находим три числа. Первое из них (180) находится на пересечении 3-й строки и столбца вектора Р0 таблицы 6, второе (3) — на пересечении 3-й строки и столбца вектора P3 таблицы 6, третье (24) — на пересечении 2-й строки и столбца вектора Р0 таблицы 8. Итак, указанный элемент есть 180 – 24 × 3=108. Число 108 записываем в 3-й строке столбца вектора Р0таблицы 7.

Значение F0 в 4-й строке столбца этого же вектора можно найти двумя способами:

1) по формуле , т.е.

2) по правилу треугольника; в данном случае треугольник образован числами 0, -16, 24. Этот способ приводит к тому же результату: 0 - (-16) × 24=384.

При определении по правилу треугольника элементов столбца вектора Р0 третье число, стоящее в нижней вершине треугольника, все время оставалось неизменным и менялись лишь первые два числа. Учтем это при нахождении элементов столбца вектора P1 таблицы 7. Для вычисления указанных элементов первые два числа берем из столбцов векторов P1 и Р3 таблицы 6, а третье число — из таблицы 7. Это число стоит на пересечении 2-й строки и столбца вектора P1 последней таблицы. В результате получаем значения искомых элементов: 18 – 12 × (3/4) =9; 5 – 3 × (3/4) = 11/4.

Число в 4-й строке столбца вектора P1 таблицы 7 можно найти двумя способами:

1) по формуле имеем

2) по правилу треугольника получим

Аналогично находим элементы столбца вектора P2.

Элементы столбца вектора Р5 вычисляем по правилу треугольника. Однако построенные для определения этих элементов треугольники выглядят иначе.

При вычислении элемента 1-й строки указанного столбца получается треугольник, образованный числами 0,12 и 1/8. Следовательно, искомый элемент равен 0 – 12 × (1/8) = -3/2. Элемент, стоящий в 3-й строке данного столбца, равен 0 - 3 × (1 /8) = -3/8.

По окончании расчета всех элементов таблицы 7 в ней получены новый опорный план и коэффициенты разложения векторов через базисные векторы и значения и . Как видно из этой таблицы, новым опорным планом задачи является план X=(0; 0; 24; 72; 0; 108). При данном плане производства изготовляется 24 изделия С и остается неиспользованным 72 кг сырья 1 вида и 108 кг сырья III вида. Стоимость всей производимой при этом плане продукции равна 384 руб. Указанные числа записаны в столбце вектора Р0 таблицы 7. Как видно, данные этого столбца по-прежнему представляют собой параметры рассматриваемой задачи, хотя они претерпели значительные изменения. Изменились данные и других столбцов, а их экономическое содержание стало более сложным. Так, например, возьмем данные столбца вектора Р2. Число 1/2 во 2-й строке этого столбца показывает, на сколько следует уменьшить изготовление изделий С, если запланировать выпуск одного изделия В. Числа 9 и 3/2 в 1-й и 3-й строках вектора P2 показывают соответственно, сколько потребуется сырья I и II вида при включении в план производства одного изделия В, а число — 2 в 4-й строке показывает, что если будет запланирован выпуск одного изделия В, то это обеспечит увеличение выпуска продукции в стоимостном выражении на 2 руб. Иными словами, если включить в план производства продукции одно изделие В, то это потребует уменьшения выпуска изделия С на 1/2 ед. и потребует дополнительных затрат 9 кг сырья I вида и 3/2 кг сырья III вида, а общая стоимость изготовляемой продукции в соответствии с новым оптимальным планом возрастет на 2 руб. Таким образом, числа 9 и 3/2 выступают как бы новыми «нормами» затрат сырья I и III вида на изготовление одного изделия В (как видно из таблицы 6, ранее они были равны 15 и 3), что объясняется уменьшением выпуска изделий С.

Такой же экономический смысл имеют и данные столбца вектора Р1 таблицы 7. Несколько иное экономическое содержание имеют числа, записанные в столбце вектора Р5. Число 1/8 во 2-й строке этого столбца, показывает, что увеличение объемов сырья II вида на 1 кг позволило бы увеличить выпуск изделий С на 1/8 ед. Одновременно потребовалось бы дополнительно 3/2 кг сырья I вида и 3/8 кг сырья III вида. Увеличение выпуска изделий С на 1/8 ед. приведет к росту выпуска продукции на 2 руб.

Из изложенного выше экономического содержания данных таблицы 7 следует, что найденный на II итерации план задачи не является оптимальным. Это видно и из 4-й строки таблицы 7, поскольку в столбце вектора P2 этой строки стоит отрицательное число — 2. Значит, в базис следует ввести вектор P2, т. е. вновом плане следует предусмотреть выпуск изделий В. При определении возможного числа изготовления изделий В следует учитывать имеющееся количество сырья каждого вида, а именно: возможный выпуск изделий В определяется для , т. е. находим

Следовательно, исключению из базиса подлежит вектор Р4иными словами, выпуск изделий В ограничен имеющимся в распоряжении предприятия сырьем I вида. С учетом имеющихся объемов этого сырья предприятию следует изготовить 8 изделий В. Число 9 является разрешающим элементом, а столбец вектора P2 и 1-я строка таблицы 7 являются направляющими. Составляем таблицу для III итерации (таблица 8).

Таблица 8

i Базис Сб P0
      P1







Дата добавления: 2017-08-01; просмотров: 1392;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.124 сек.