Особенности n классификация СЧМ
Под системой в общей теории систем (системологии) понимается комплекс взаимосвязанных и взаимодействующих между собой элементов, предназначенный для решения единой задачи [213]. Системы могут быть классифицированы по различным признакам. Одним из них является степень участия человека в работе системы. С этой точки зрения различают автоматические, автоматизированные и неавтоматические системы. Работа автоматической системы осуществляется без участия человека. В неавтоматической системе работа выполняется человеком без применения технических устройств. В работе автоматизированной системы принимает участие как человек, так и технические устройства. Следовательно, такая система представляет собой систему «человек—машина».
На практике применяются самые разнообразные виды систем «человек—машина». Основой их классификации могут явиться следующие четыре группы признаков: целевое назначение системы, характеристики человеческого звена, тип и структура машинного звена, тип взаимодействия компонентов системы [60]. Эта классификация приведена на рис. 3.1.
Целевое назначение системы оказывает определяющее влияние на многие ее характеристики и поэтому является исходным признаком. По целевому назначению можно выделить следующие классы систем:
■ управляющие, в которых основной задачей человека является управление машиной (или комплексом);
Рис. 3.1. Классификация систем «человек—машина».
■ обслуживающие, в которых человек контролирует состояние машинной системы, ищет неисправности, производит наладку, настройку, ремонт и т. п.;
■ обучающие, т. е. вырабатывающие у человека определенные навыки (технические средства обучения, тренажеры ит. п.);
■ информационные, обеспечивающие поиск, накопление или получение необходимой для человека информации (радиолокационные, телевизионные, документальные системы, системы радио- и проводной связи и др.);
■ исследовательские, используемые при анализе тех или иных явлений, поиске новой информации, новых заданий (моделирующие установки, макеты, научно-исследовательские приборы и установки).
Особенность управляющих и обслуживающих систем заключается в том, что объектом целенаправленных воздействий в них является машинный компонент системы. В обучающих и информационных СЧМ направление воздействий противоположное — на человек. В исследовательских системах воздействие имеет и ту, и другую направленность.
По признаку характеристики «человеческого звена» можно выделить два класса СЧМ:
■ моносистемы, в состав которых входит один человек и одно или несколько технических устройств;
■ полисистемы, в состав которых входит некоторый коллектив людей и взаимодействующие с ним одно или комплекс технических устройств.
Полисистемы в свою очередь можно подразделить на «паритетные» и иерархические (многоуровневые). В первом случае в процессе взаимодействия людей с машинными компонентами не устанавливается какая-либо подчиненность и приоритетность отдельных членов коллектива. Примерами таких полисистем может служить система «коллектив людей — устройства жизнеобеспечения» (например, система жизнеобеспечения на космическом корабле или подводной лодке). Другим примером может быть система отображения информации с большим экраном, предназначенная для использования коллективом операторов.
В отличие от этого в иерархических СЧМ устанавливается или организационная, или приоритетная иерархия взаимодействия людей с техническими устройствами. Так, в системе управления воздушным движением диспетчер аэропорта образует верхний уровень управления. Следующий уровень — это командиры воздушных судов, действиями которых руководит диспетчер. Третий уровень — остальные члены экипажа, работающие под руководством командира корабля.
По типу и структуре машинного компонента можно выделить инструментальные СЧМ, в состав которых в качестве технических устройств входят инструменты и приборы. Отличительной особенностью этих систем, как правило, является требование высокой точности выполняемых человеком операций.
Другим типом СЧМ являются простейшие человеко-машинные системы, которые включают стационарное и нестационарное техническое устройство (различного рода преобразователи энергии) и человека, использующего это устройство. Здесь требования к человеку существенно различаются в зависимости от типа устройства, его целевого назначения и условий применения. Однако их основной особенностью является сравнительная простота функций человека.
Следующим важным типом СЧМ являются сложные человеко-машинные системы, включающие помимо использующего их человека некоторую совокупность технологически связанных, но различных по своему функциональному назначению аппаратов, устройств и машин, предназначенных для производства определенного продукта (энергетическая установка, прокатный стан, автоматическая поточная линия, вычислительный комплекс и т. п.). В этих системах, как правило, связанность технологического процесса обеспечивается локальными системами автоматического управления. В задачу человека входит общий контроль за ходом технологического процесса, изменение режимов работы, оптимизация отдельных процессов, настройка, пуск и остановка.
Еще более сложным типом СЧМ являются системотехнические комплексы. Они представляют собой сложную техническую систему с не полностью детерминированными связями и коллектив людей, участвующих в ее использовании. Для систем такого типа характерным является взаимодействие не только по цепи «человек—машина», но и по цепи «человек—человек—машина». Другими словами, в процессе своей деятельности человек взаимодействует не только с техническими устройствами, но и с другими людьми. При всей сложности системотехнических комплексов их в большинстве случаев можно представить в виде иерархии более простых человеко-машинных систем. Типичными примерами системотехнических комплексов различного уровня и назначения могут служить судно, воздушный лайнер, промышленное предприятие, вычислительный центр, транспортная система и т. п.
В основу классификации СЧМ по типу взаимодействия человека и машины может быть положена степень непрерывности этого взаимодействия. По этому признаку различают системы непрерывного (например, система «водитель — автомобиль») и эпизодического взаимодействия. Последние, в свою очередь, делятся на системы регулярного и стохастического взаимодействия. Примером системы регулярного взаимодействия может служить система «оператор — ЭВМ». В ней ввод информации и получение результатов определяются характером решаемых задач, т. е. режимы взаимодействия во времени регламентируются характером и объемом вычислений. Стохастическое эпизодическое взаимодействие имеет место в таких системах, как «оператор — система централизованного контроля», «наладчик — станок» и т. п.
Рассмотренная классификация СЧМ не является единственно возможной. Примеры иных подходов к решению этой задачи приводятся в специальной литературе [18, 26, 35, 38, 53, 137, 162].
Однако несмотря на большое разнообразие систем «человек — машина», они имеют целый ряд общих черт и особенностей. Эти системы являются, как правило, динамическими, целеустремленными, самоорганизующимися, адаптивными.
Системы «человек — машина» относятся к классу сложных динамических систем, т. е. систем, состоящих из взаимосвязанных и взаимодействующих элементов различной природы и характеризующихся изменением во времени состава структуры и (или) взаимосвязей. Из этого следуют характерные особенности, присущие СЧМ как сложной динамической системе:
■ разветвленность структуры (или связей) между элементами (человеком и машиной);
■ разнообразие природы элементов (в состав СЧМ могут входить человек, коллектив людей, автоматы, машины, комплексы мащин и т. д.);
■ перестраиваемость структуры и связей между элементами (например, при нормальном ходе технологического процесса оператор лишь следит за ходом его протекания, т. е. включен в контур управления как бы параллельно; при отклонении от нормы оператор берет управление на себя, т. е. включается в контур управления последовательно);
■ автономность элементов, т. е. способность их автономно выполнять часть своих задач.
Системы «человек — машина» относятся также к классу целеустремленных систем. В общем случае считается, что система действует целеустремленно, если она продолжает преследовать одну и ту же цель, изменяя свое поведение при изменении внешних условий [213]. Существенной особенностью целеустремленных систем является их способность получать одинаковые результаты различными способами. Системы этого класса могут изменять свои задачи; они выбирают как-сами задачи, так и средства их реализации. Целеустремленность СЧМ обусловлена тем, что в нее включен человек. Именно он ставит цели, определяет задачи и выбирает средства достижения цели.
Системы «человек — машина» можно рассматривать и как адаптивные системы. Свойство адаптации заключается в приспособлении СЧМ к изменяющимся условиям работы, в изменении режима функционирования в соответствии с новыми условиями. Для повышения эффективности СЧМ необходимо предусмотреть возможность адаптации как внутри самой системы, так и по отношению к внешней среде. До недавнего времени свойство адаптации СЧМ реализовалось благодаря приспособительным возможностям человека, гибкости и пластичности его поведения, возможности его изменения в зависимости от конкретной обстановки. В настоящее время, на повестку дня ставится вопрос о создании СЧМ, в которых свойство адаптации реализуется путем соответствующего технического обеспечения. Речь идет о создании таких технических средств, которые могут изменять свои параметры и условия деятельности в зависимости от текущего конкретного психофизиологического состояния человека и показателей эффективности его деятельности. Попытки решения этой задачи привели к появлению понятия взаимной адаптации человека и машины в системах управления, или иначе — созданию систем адаптивного информационного взаимодействия в СЧМ. Эта задача решается в рамках структурно-психологической концепции анализа и проектирования СЧМ [17, 18]. Одним из конкретных способов реализации такого подхода является профилактическое обслуживание СЧМ [102, 214].
Системы «человек—машина» относятся также к числу адекватных (от лат. adaequatus — приравненный, равный) систем. Под адекватностью понимается совокупность свойств системы, характеризующих ее приспособленность к выполнению данной задачи. Применительно к техническим звеньям адекватность определяется:
■ правильной организацией СЧМ (наличие в структуре системы необходимого оборудования, программных средств, каналов связи, обученного персонала и т. д.);
■ хорошими физическими характеристиками техники (механическими, энергетическими и т. п.);
■ средствами активации функционирования (устройства приведения в готовность, переключения работы с одного режима на другой и т. п.);
■ нормальными процессами (материально-техническое, метрологическое и др. виды обеспечения).
Применительно к человеку информационная адекватность определяется свойствами концептуальной модели. В основе этого вида адекватности лежат функциональная организация и свойства анализаторов, центральной нервной системы, психофизиологические законы преобразования информации человеком в процессе деятельности. Физическая адекватность характеризует антропологическое и силовое соответствие человека решаемым задачам. Активационная адекватность определяется мотивами, установками, потребностями, заинтересованностью человека в выполнении данного вида деятельности, характером эмоциональных реакций, свойствами внимания. Базовая адекватность определяется функционированием вегетативных систем (сердечно-сосудистой, дыхательной и др.), особенностями биохимических процессов и психическими состояниями. Разумеется, указанные четыре группы свойств не являются независимыми.
Активационная, физическая и базовая адекватность определяют в целом работоспособность человека. В такой трактовке данное понятие характеризует возможности человека реализовать имеющийся у него в виде концептуальной модели «внутренний инструмент» и в виде эффекторов — «внешний инструмент» выполнения определенного вида трудовой деятельности [15].
И наконец, системы «человек — машина» можно отнести к классу самоорганизующихся систем, т. е. систем, способных к уменьшению энтропии (неопределенности) после вывода их из устойчивого, равновесного состояния под действием различного рода возмущений. Это свойство становится возможным благодаря целенаправленной деятельности человека, способности его планировать свои действия, принимать правильные решения и реализовывать их в соответствии с возникшими обстоятельствами. Способность к адаптации и самоорганизации обуслбвливает такое важное свойство систем «человек — машина», каким является их живучесть.
Из всего сказанного видно, что рассмотренные особенности СЧМ определяются наличием в их составе человека, его возможностью правильно решать возникающие задачи в зависимости от конкретных условий и обстановки. Это лишний раз показывает, что исходным пунктом анализа и описания СЧМ должна быть целесообразная деятельность человека.
Важными понятиями, используемыми при анализе и исследовании системы «человек—машина» являются функционирование, цель и оптимизация СЧМ. Функционирование СЧМ — процесс достижения поставленных перед СЧМ целей, состоящий из упорядоченной совокупности операций, выполняемых как человеком, так и техническими устройствами. Цель функционирования задается (формируется) человеком (оператором, конструктором, организатором производства и др.) и является системообразующим фактором, благодаря которому реализуется принцип обратной связи, которая позволяет корректировать промежуточные результаты и направлять функционирование СЧМ на достижение этой цели [35, 137].
Часть процесса функционирования, выделяемая в интересах описания, оценки, проектирования эксплуатации или исследования СЧМ по некоторым признакам, наиболее важным для решения задачи, называется функцией СЧМ. Она включает в себя функции оператора и функции технической части СЧМ. По общей роли в процессе функционирования СЧМ функции могут быть основными или обеспечивающими. Основные функции непосредственно обеспечивают достижение цели СЧМ, их невыполнение ведет к недостижению цели. Обеспечивающие функции обеспечивают условия выполнения основных функций и, следовательно, процесс функционирования СЧМ в целом, т. е. это такие функции, необходимость выполнения которых диктуется не способом достижения цели, а необходимостью поддержания работоспособного состояния элементов СЧМ. Совокупность функций, являющихся частью функционирования СЧМ, выполняемых фиксированным неизменным составом элементов СЧМ и используемых в данной части процесса функционирования СЧМ, называется режимом функционирования. Режим функционирования является рабочим, если поставлена цель получения продукта труда, для которого создана СЧМ. Режим функционирования СЧМ является вспомогательным, если поставлена цель изменения состояния. К их числу относятся, например, режим хранения, подготовки, готовности к применению, восстановления работоспособности, технического обслуживания, консервации, ремонта, транспортировки и др.
Цель СЧМ в общем случае представляет модель необходимого будущего кибернетической системы, являющаяся той формой отражения действительности, которая объединяет прошлое, настоящее и будущее. Для СЧМ помимо этого можно определить и цель второго уровня (по отношению к модели необходимого будущего состояния) как модель необходимого будущего поведения системы и цель третьего уровня как модель настоящего поведения СЧМ. Все три модели (цели) состояния и поведения СЧМ на практике могут быть закреплены в структурной организации технической части системы в виде:
■ конечного состояния технической части СЧМ (соответствующего цели первого уровня);
■ динамического состояния технической части СЧМ (соответствующего цели второго уровня);
■ фактического стереотипа поведения технической части системы (соответствующего цели третьего уровня).
Эти три вида состояний образуют естественную иерархию целей первого, второго и третьего уровней. В зависимости от сложности системы число уровней целей может быть значительно большим, чем в данном простейшем случае.
Сложная СЧМ состоит из множества подсистем, каждая из которых имеет свою иерархию целей в виде моделей конечного, динамического состояний и стереотипа поведения технических и человеческих подсистем. Поэтому в СЧМ при конкретном ее функционировании цели «закреплены» в технической части структуры всей системы. Отсюда следует, что для системы в целом целостность ее структуры означает и целостность системы ее целей всех уровней для всех ее подсистем (как фактических, так и потенциальных).
Поскольку при таком подходе для каждой из подсистем различается три уровня целей, то и целостность подсистем по таким целям целесообразно рассматривать состоящей из трех форм целостности, сопоставленных каждому из понятия цели [131].
Достижение поставленной перед СЧМ цели тесно связано с ее оптимизацией. Под ней в наиболее общем виде понимается определение совокупности частных показателей, при которых достигается экстремум некоторой целевой функции, характеризующей эффективность СЧМ. С математической точки зрения оптимизация может быть условной, когда на искомые показатели накладываются некоторые ограничения, либо безусловной, когда этих ограничений нет. В первом случае ищется условный экстремум, во втором — безусловный. Кроме того, оптимизация может вестись по одному показателю или нескольким показателям одновременно, в последнем случае речь идет о многопараметрической (векторной) оптимизации. Поскольку СЧМ является сложным динамическим объектом, работа которого обычно протекает в рамках определенных ограничений, а качество функционирования зависит от большого числа факторов, то для нее наиболее характерным является случай многопараметрической условной оптимизации. В математическом плане такая задача является наиболее сложной.
С формальной точки зрения задача оптимизации СЧМ формируется следующим образом. Есть некоторая целевая функция
где — частные показатели деятельности оператора, работы машины и условий внешней среды. Требуется определить значения этих показателей, при которых функция Э достигает максимума. При этом на их значения накладываются некоторые ограничения где , — области допустимых значений соответствующих показателей. В общем случае решение рассмотренной задачи оптимизации СЧМ представляет определенные трудности, поэтому обычно стараются провести возможные упрощения (сокращение числа искомых показателей, сокращение числа ограничивающих условий и др.). В зависимости от возможной степени упрощения для решения задачи оптимизации СЧМ могут использоваться методы математического программирования, наискорейшего спуска, множителей Лагранжа и др.
Необходимо отметить, что термин оптимизация используется в инженерной психологии довольно часто. Например, говорят об оптимизации деятельности оператора, оптимизации рабочего места, оптимизации труда и т. д. Однако в большинстве случаев этот термин употребляется не в строгом смысле, а речь идет лишь о некотором улучшении того или иного параметра.
Выше были рассмотрены основные вопросы системного подхода к изучению главного звена СЧМ — человека. На основании этого можно в общих чертах охарактеризовать некоторые важнейшие принципы системного подхода к изучению СЧМ. Суть их сводится к следующему [60].
1. Возможно более полное и точное определение назначения системы, ее целей и задач. Это требует, в свою очередь, анализа состава и значимости отдельных целей, подцелей и задач; определения возможности их осуществимости и требуемых для этого средств и ресурсов; определения показателей эффективности и целевой функции СЧМ.
2. Исследование структуры системы, и прежде всего состава входящих в нее компонентов, характера межкомпонентных связей и связей системы с внешней средой, пространственно-временной организации компонентов системы и их связей, границ системы, ее изменчивости и особенностей на различных стадиях существования (жизненного цикла).
3. Последовательное изучение характера функционирования системы, в том числе: всей системы в целом, отдельных подсистем в пределах целого, изменчивости функций и их особенностей на разных стадиях существования системы.
4. Рассмотрение системы в динамике, в развитии, т. е. на различных этапах ее жизненного цикла: при проектировании, производстве и эксплуатации.
На последнем из этих принципов следует остановиться особо. В ряде случаев рамки инженерной психологии неправомерно суживают, отводя ей лишь роль проектировочной дисциплины. Как отмечалось выше, проектировочная сущность инженерной психологии приобретает в настоящее время решающее значение. Однако только ею не ограничивается проблематика инженерной психологии. Для того чтобы были реализованы все потенциальные возможности систем «человек — машина», необходим также правильный учет инженерно-психологических требований в процессе их производства и эксплуатации. Это приводит к необходимости создания единой системы инженерно-психологического обеспечения систем «человек — машина» на всех этапах их жизненного цикла.
Под инженерно-психологическим обеспечением понимается весь комплекс мероприятий, связанных с организацией учета человеческого фактора в процессе проектирования, производства и эксплуатации СЧМ. Проблема инженерно-психологического обеспечения имеет два основных аспекта: целевой и организационно-методический (табл. 3.1).
Таблица 3.1
Содержание инженерно-психологического обеспечения СЧМ
Этап жизненного цикла | Аспект инженерно-психологического обеспечения | |
целевой | организационно-методический | |
Проектирование | Определение функций человека в проектируемой СЧМ и оценка его психофизиологических возможностей по их выполнению (инженерно-психологическое проектирование) | Разработка нормативных и справочно-методических материалов по инженерно-психологическому проектированию деятельности оператора. Организация труда коллектива проектировщиков |
Производство | Учет психофизиологических свойств человека в процессе производства (условия труда, режимы труда и отдыха, взаимосвязи операторов в групповой деятельности и т.п.) | Разработка нормативных и справочно-методических материалов по учету человеческого фактора в процессе производства |
Эксплуатация | Учет психофизиологических возможностей человека при эксплуатации техники (профессиональный отбор, обучение, тренировки, формирование операторских коллективов, организация их труда) | Разработка методик по профессиональному отбору (если это необходимо) и подготовке операторов, подбору коллективов, организации труда. Разработка нормативных документов, регламентирующих применение этих методик |
Первый из них связан с непосредственным выполнением работ по учету человеческого фактора на каждом из этапов жизненного цикла СЧМ; его содержание целиком и полностью определяется проблематикой инженерной психологии. Второй аспект связан с организационно-методическим обеспечением работ по учету человеческого фактора. Он включает в себя разработку необходимых справочно-методических материалов, с помощью которых можно выполнять эти работы, а также разработку нормативных документов, регламентирующих (в частности, утверждающих) степень и полноту учета человеческого фактора при проектировании, производстве и эксплуатации СЧМ. При отсутствии таких документов проведение работ по учету человеческого фактора не будет являться обязательным мероприятием, и поэтому задача инженерно-психологического обеспечения не может считаться полностью решенной.
3.2. Показатели качества систем «человек-машина»
Любая СЧМ призвана удовлетворять те или иные потребности человека и общества. Для этого она должна обладать определенными свойствами, которые закладываются при проектировании СЧМ и реализуются в процессе эксплуатации. Под свойством СЧМ понимается ее объективная способность (особенность), проявляющаяся в процессе эксплуатации. Количественная характеристика того или иного свойства системы, рассматриваемого применительно к определенным условиям ее создания или эксплуатации, носит название показателя качества СЧМ.
В нашей стране разработана определенная номенклатура показателей качества промышленной продукции. Она включает в себя 8 групп показателей, с помощью которых можно количественно оценивать различные свойства продукции. К ним относятся: показатели назначения, надежности и долговечности, технологичности, стандартизации и унификации, а также эргономический, эстетический, патентно-правовой, экологический и экономический показатели.
Не рассматривая подробно все показатели (это не является задачей инженерной психологии), остановимся лишь на тех из них, которые влияют на деятельность человека в СЧМ или зависят от результатов его деятельности.
Быстродействие (время цикла регулирования) определяется временем прохождения информации по замкнутому контуру «человек — машина»:
(3.1)
где ti — время задержки (обработки) информации в i-м звене СЧМ; к — число последовательно соединенных звеньев СЧМ; в качестве их могут выступать как технические звенья, так и операторы.
Надежность характеризует безошибочность (правильность) решения стоящих перед СЧМ задач. Оценивается она вероятностью правильного решения задачи, которая, по статистическим данным, определяется отношением
(3.2)
где mош и N — соответственно число ошибочно решенных и общее число решаемых задач.
Важной характеристикой деятельности оператора является также точность его работы. На этой характеристике следует остановиться особо, ибо в ряде случаев происходит некоторое смешение ее с надежностью [8]. В качестве исходного понятия для определения обеих характеристик используется понятие «ошибка оператора», для расчета обеих характеристик предлагаются одинаковые формулы и т. д. Фактически же надежность и точность представляют собой различные показатели, характеризующие разные стороны деятельности оператора. Правильное толкование обоих этих показателей дается в работе [122].
Под точностью работы оператора следует понимать степень отклонения некоторого параметра, измеряемого, устанавливаемого или регулируемого оператором, от своего истинного, заданного или номинального значения. Количественно точность работы оператора оценивается величиной погрешности, с которой оператор измеряет, устанавливает или регулирует данный параметр:
где Iн — истинное или номинальное значение параметра; Iоп — фактически измеряемое или регулируемое оператором значение этого параметра.
Величина погрешности может иметь как положительный, так и отрицательный знак. Понятия ошибки и погрешности не тождественны между собой: не всякая погрешность является ошибкой. До тех пор пока величина погрешности не выходит за допустимые пределы, она не является ошибкой, и только в противном случае ее следует считать ошибкой и учитывать также при оценке надежности. Понятие погрешности наиболее важно для тех случаев, когда измеряемый или регулируемый оператором параметр представляет непрерывную величину. Так, например, можно говорить о точности определения координат самолета оператором радиолокационной станции и т. д.
В работе оператора следует различать случайную и систематическую погрешности. Случайная погрешность оператора оценивается величиной среднеквадратичес-кой погрешности, систематическая погрешность — величиной математического ожидания отдельных погрешностей. Методы их определения приведены в работах [93, 122, 168].
Своевременность решения задачи СЧМ оценивается вероятностью того, что стоящая перед СЧМ задача будет решена за время, не превышающее допустимое:
(3.3)
где φ (Т) — функция плотности времени решения задачи системой «человек—машина».
Эта же вероятность по статистическим данным оценивается по выражению
(3.4)
где тнс — число несвоевременно решенных СЧМ задач.
При определении величин mош и mнс, а следовательно, и при оценке вероятностей Рпр и Рсв не имеет значения, за счет каких причин (некачественной работы машины или некачественной деятельности оператора) неправильно или несвоевременно решена задача системой «человек — машина».
Поскольку большинство СЧМ работают в рамках определенных временных ограничений, то несвоевременное решение задачи приводит к недостижению цели, стоящей перед системой «человек— машина». Поэтому в этих случаях в качестве общего показателя надежности используется вероятность правильного (Рпр) и (Рсв) своевременного решения задачи
(3.5)
Такой показатель используется, например, при применении обобщенного структурного метода оценки надежности СЧМ [35].
Безопасность труда человека в СЧМ оценивается вероятностью безопасной работы
(3.6)
где Рвоз. — вероятность возникновения опасной или вредной для человека производственной ситуации i-ro типа; Рош. — вероятность неправильных действий оператора в i-й ситуации; п — число возможных травмоопасных ситуаций.
Опасные и вредные ситуации могут создаваться как техническими причинами (неисправность машины, аварийная ситуация, неисправность защитных сооружений), так и нарушениями правил и мер безопасности со стороны людей. При этом, как отмечалось выше, в условиях автоматизированного производства, когда контакт человека с рабочими частями машин и оборудования сравнительно невелик, большая роль в возникновении опасных и вредных для человека ситуаций принадлежит психофизиологическим факторам. Их влияние также нужно учитывать при определении показателя Рбт.
Степень автоматизации СЧМ характеризует относительное количество информации, перерабатываемой автоматическими устройствами. Эта величина определяется по формуле
(3.7)
где Ноп — количество информации, перерабатываемой оператором; Нсчм — общее количество информации, циркулирующей в системе «человек—машина».
Для каждой СЧМ существует некоторая оптимальная степень автоматизации (kопт), при которой эффективность СЧМ становится максимальной (рис. 3.2). При этом чем сложнее СЧМ, тем больше потери эффективности из-за неправильного выбора степени автоматизации. Это видно из сравнения кривых 1 и 2 на рис. 3.2. Оптимальная степень автоматизации устанавливается в процессе решения задачи распределения функций между человеком и машиной.
Рис. 3.2. Зависимость эффективности СЧМ от степени . автоматизации: 1 — для простых систем; 2 — для сложных систем.
Экономический показатель характеризует полные затраты на систему «человек— машина». В общем случае эти затраты складываются из трех составляющих: затрат на создание (изготовление) системы Си, затрат на подготовку операторов Соп и эксплуатационных расходов Сэ. По отношению к процессу эксплуатации затраты Сии Соп являются, как правило, капитальными. Тогда полные приведенные затраты в СЧМ определяются выражением
(3.8)
где Ен — нормативный коэффициент экономической эффективности капитальных затрат.
При заданной величине WCЧM путем перераспределения затрат между отдельными составляющими Си, Соп и Сэ, можно получить различные значения общей эффективности СЧМ. И, наоборот, заданная эффективность СЧМ может быть обеспечена с помощью различных затрат в зависимости от распределения их между отдельными составляющими. Методы технико-экономической оптимизации СЧМ (получение заданной эффективности при минимуме WC4M или получение максимума эффективности при заданной величине WC4M) путем перераспределения затрат Си, Соп и Сэ, рассмотрены в работе [85].
Большое значение при анализе и оценке СЧМ имеют эргономические показатели. Они учитывают совокупность специфических свойств системы «человек — машина», обеспечивающих возможность осуществления в ней деятельности человека (группы людей). Эргономические показатели представляют собой иерархическую структуру, включающую в себя целостную эргономическую характеристику (эргономичность СЧМ), комплексные (управляемость, обслуживаемость, освояемость и обитаемость СЧМ), групповые (социально-психологические, психологические, физиологические, антропометрические, гигиенические) и единичные показатели. Общие методические рекомендации по их определению приведены в работе [215].
С помощью рассмотренных показателей можно оценить одно или несколько однотипных свойств СЧМ. Иногда их может оказаться недостаточно для решения инженерно-психологических задач (например, при выборе одного из нескольких конкурирующих вариантов СЧМ). В этом случае нужно дать интегральную оценку качества системы «человек — машина» как совокупности всех ее основных свойств. Для этого используется понятие эффективности СЧМ, под которой понимается степень приспособленности системы к выполнению возложенных на нее функций. При определении эффективности СЧМ необходимо учесть следующие правила: —для получения полной интегральной оценки следует учитывать всю совокупность частных показателей качества СЧМ; —частные показатели должны входить в общую оценку с некоторым «весом», характеризующим их важность в данной системе; —поскольку частные показатели имеют различный физический смысл и измеряются в разных величинах, они должны быть приведены к безразмерному и нормированному относительно некоторого эталона виду.
При этом следует отметить, что все частные показатели с точки зрения их влияния на эффективность могут быть повышающими (надежность, безопасность, своевременность и т. п.) или понижающими (затраты, время решения задачи и др.). Поэтому нормирование производится следующим образом: для повышающих показателей
(3.10)
для понижающих показателей
(3.11)
где Эi и Ei — соответственно нормированное и абсолютное значение i-гo частного показателя; Еmах. и Emin. — максимальное (минимальное) значение i-гo частного показателя, которое имеет существующая или проектируемая аналогичная система.
Эффективность системы представляется как некоторая совокупность частных показателей. Чаще всего применяется аддитивная функция
(3.12)
где ai — «весовые» коэффициенты, сумма которых должна быть равна единице; n — число учитываемых частных показателей.
При выполнении рассмотренных условий величина Эсчм принимает значения в пределах от нуля до единицы и представляет собой своеобразный «коэффициент полезного действия» системы «человек — машина».
3.3. Основные концепции анализа и проектирования систем «человек-машина»
В настоящее время в инженерной психологии, а также в смежных с нею научных дисциплинах и направлениях (эргономика, психология труда и управления, теория эргатических систем, теория надежности и эффективности СЧМ и др.) разработан целый ряд концепций анализа, описания и проектирования систем «человек—машина». Эти концепции различаются используемым математическим аппаратом, составом необходимых исходных данных, различными взглядами на роль и место человека в СЧМ. Такое положение является достаточно точным отражением современного уровня развития инженерной психологии, поскольку в зависимости от конкретных условий специалист по инженерной психологии (конструктор, организатор производства, специалист по эксплуатации) может выбрать и использовать ту или иную из существующих концепций. Поэтому представляется целесообразным рассмотреть наиболее конструктивные из возможных концепций (теорий, подходов). Все они условно делятся на две большие группы: психологические и кибернетические (рис. 3.3).
Наиболее общей из них является концепция, основанная на использовании деятельностного подхода [55, 56]. С ее позиций категория деятельности выступает как начало, содержание и завершение процессов анализа, организации, проектирования и оценки СЧМ. При этом категория деятельности выступает в качестве предмета:
■ объективного научного изучения;
■ управления, т. е. того, что подлежит организации в сложную систему функционирования и оценки;
■ проектирования, основной задачей которого является выявление способов и условий оптимальной реализации определенных видов деятельности;
■ многоплановой оценки, осуществляемой в соответствии с различными критериями (надежность, быстродействие, удовлетворенность трудом, комфортность и т. п.).
Рис. 3.3. Основные концепции анализа и проектирования СЧМ.
В рамках этой концепции разработан микроструктурный подход (от греч. mikros — малый и лат. structure — строение) к анализу деятельности. Сущность микроструктурного подхода состоит в выделении компонентов (единиц анализа), сохраняющих свойства целого, и установлении между ними типов взаимоотношения или координации. Набор (алфавит) компонентов должен быть достаточно широк для того, чтобы охватить процесс в целом; каждый из компонентов должен обладать не только качественной, но и количественной определенностью.
Микроструктурный подход оперирует понятиями операции, функционального блока, фазы процесса, кванта восприятия или действия. Каждый из компонентов отличается по ряду параметров: место в структуре деятельности, информационная емкость, время выполнения, тип преобразования информации, возможные связи с другими компонентами и средой.
Наиболее распространенный прием микроструктурного подхода состоит в том, что время выполнения работы делится на ряд интервалов и предполагается, что в каждом из них выполняются те или иные преобразования входной информации, осуществляемые определенными функциональными блоками. Микроструктурный подход является возможным прототипом проектирования отдельных функций операторской деятельности [55, 215].
Одной из первых психологических концепций была предложенная в 1967 году Б.Ф. Ломовым концепция проектирования деятельности [цит. по 92]. Суть ее состоит в том, что проект деятельности оператора (и вообще любого работника) должен выступать как основа решения всех остальных задач проектирования СЧМ. Эта концепция базируется на рассмотренных в первой главе методологических принципах (гуманизации труда, активного оператора, комплексности и др.).
Целый ряд задач анализа, описания и проектирования СЧМ может быть решен на основе использования структурно-психологической концепции [17, 143]. Основной смысл ее состоит в соотнесении структуры технических средств деятельности оператора и психологических факторов сложности (ПФС) выполнения им своих функций, в частности сложности решения оперативных задач. С позиций данной концепции проектирование технических средств рассматривается как процесс анализа и материализации априорных стратегий решения задач с целью оптимизации ПФС. Их оптимальный уровень достигается путем многоуровневой взаимной адаптации людей и технических средств. Оптимальными значениями ПФС считаются те, которые обеспечивают достижение цели (решение задачи) при минимальном значении внешнего критерия сложности (времени решения задачи, числа ошибок, показателей психофизической напряженности и др.).
Оптимизация ПФС достигается путем создания системы адаптивного информационного взаимодействия между оператором и ЭВМ, работающей по принципу гибридного интеллекта. Он достигается путем разумного сочетания естественного интеллекта человека и возможностей современных ЭВМ. При этом человек и ЭВМ рассматриваются как равноправные партнеры по информационному взаимодействию. Оптимизации ПФС способствует также применение трансформационной теории обучения. Согласно ей процесс обучения не носит традиционно используемый характер; на кривой обучения имеются плато (пологие участки), соответствующие переходуна новый, более высокий уровень овладения деятельности. Последнее одновременно способствует и достижению более оптимальных значений ПФС.
Анализ взаимодействия априорных и реальных стратегий поведения оператора и соответствующих им уровней ПФС позволяет расширить рамки инженерно-психологического проектирования — не только распространить его на предварительный выбор характеристик системы, но и сделать проектирование непрерывным, последовательно решающим задачу оптимизации СЧМ и после реализации предварительного проекта, т. е. в ходе эксплуатации системы [17].
При разработке автоматизированных систем организационного типа (АСУП, ОАСУ и т. п.) весьма плодотворным оказывается использование концепции психологического обеспечения (ПО) АСУ [141]. Под ним понимается планирование, разработка, организация и реализация комплекса мероприятий по учету психологических факторов на всех этапах создания, внедрения и эксплуатации АСУ. Согласно этой концепции, любая АСУ рассматривается как сложная социотехническая система, которая не может эффективно функционировать, если она создается и эксплуатируется без учета психологического фактора. Его учет должен осуществляться на всех этапах проектирования, внедрения и эксплуатации АСУ. Создание АСУ должно начинаться с проектирования оптимальной (рациональной) человеческой деятельности. Важнейшим фактором, обеспечивающим эффективность функционирования разрабатываемой системы, является подготовка персонала АСУ. Она базируется на анализе, проектировании и синтезе (формировании) деятельности. Анализ деятельности осуществляется на этапе предпроектного обследования, а его результатом являются рекомендации на проектирование или совершенствование деятельности персонала АСУ. Проектирование деятельности осуществляется на этапах технического и рабочего проектирования, а его результатом являются должностные инструкции. Они должны разрабатываться с учетом обеспечения быстрейшей адаптации работника к эффективной деятельности в условиях АСУ. Синтез деятельности включает в себя профессиональный отбор, обучение, выработку индивидуальных и коллективных умений и навыков, а также обеспечение психологической совместимости всего персонала АСУ. Синтез деятельности должен начинаться на этапе технического проектирования и завершаться на этапе внедрения во взаимодействии с проектированием технической части АСУ. Его конечной целью является обеспечение фактической эффективной деятельности всего персонала АСУ.
При создании автоматизированных систем управления технологическими процессами (АСУТП), деятельность оператора в которых носит сложный мыслительный характер, может быть использована концепция идеализированных структур деятельности [26]. Эта концепция базируется на данных о формализуемых человеком способах организации процесса контроля и управления объектом на разных уровнях обучения и в разных конкретных условиях. На основе концепции разработаны методы инженерно-психологического анализа и проектирования деятельности оператора АСУТП, базирующиеся на исходных данных о психологической структуре деятельности оператора (включающей сложные виды мыслительных задач), позволяющие свести к минимуму число операций (шагов) решения задач проектирования, ложность исходных данных на разных стадиях создания СЧМ.
Для анализа, описания и проектирования следящих систем может быть использована концепция инженерно-психологического проектирования полуавтоматических систем управления, использующих принцип слежения [173, 201]. Практическая реализация концепции связана с решением ряда проблем:
■ создание единого подхода к описанию функционирования технической части системы и деятельности оператора;
■ учет индивидуальных психофизиологических характеристик деятельности, различия между которыми носят, как правило, случайный характер;
■ учет динамики характеристик деятельности в процессе обучения;
■ отбор операторов, обладающих качествами, необходимыми для работы на конкретном объекте управления; из этого следует, что вопросы обучения и профессионального отбора выступают как этапы системного подхода к проектированию деятельности.
Реализация концепции потребовала уточнения понятия «передаточная функция оператора». Оказалось, что спектр ответных действий оператора содержит кроме требуемого сигнала и спектр дополнительных (малых) движений, необходимых оператору для познания и контроля процесса управления и названных дельтаремнантой. Малые движения являются одним из показателей психологических особенностей работы оператора в режиме слежения. Отсутствие формализованного описания свойств этих движений в большинстве математических моделей деятельности и обуславливает их неадекватность. Включение же их в математические модели позволяет учитывать психологические особенности деятельности человека в следящих системах.
В результате учета малых движений стало возможным аналитически оценивать долю погрешности, вносимую в ошибку выходного сигнала системы, как от функционирования человека-оператора, так и от разброса параметров любого из элементов технической части системы. Это дает возможность производить синтез системы по заданным требованиям. При этом учитываются и экономические показатели, что позволяет создавать наиболее экономичные системы «человек—машина».
Рассмотренные концепции отличает ярко выраженный их, если так можно выразиться, психологический характер. Они базируются на знании и учете психологических характеристик и свойств человека, а основу этих концепций составляет прежде всего проектирование деятельности оператора в системе «человек—машина». Помимо них существует еще ряд концепций, в основе которых лежит кибернетический подход к анализу и проектированию СЧМ.
Одна из таких концепций носит название организмической. Она разработана в рамках теории эргатических систем [53, 131]. В соответствии с организмической концепцией основой оптимальной кооперации человека и машины должны служить принципы организации живого, т. е. организма как феномена целесообразного живого в природе. Концепция основывается на двух основных положениях: 1) организм представляет собой соответствующим образом организованную совокупность функциональных систем (понятие о них дается в главе IV); 2) основные закономерности организации и функционирования каждой системы и всего организма и СЧМ в целом — одни и те же. Основное смысловое содержание организмического постулата формулируется следующим образом: создание оптимальных СЧМ в функциональном смысле эквивалентно оптимальной «достройке» организма оператора машинами как орудиями труда.
В рамках концепции предлагается определенная система принципов поведения биосистем. К их числу относятся принципы: активности, гомеостаза, автономности, иерархичности, доминанты, целостности, эволюции. Подробно они описаны в [53].
Сущность организмической концепции сводится к синтезу эргамата — системы, состоящей из человека и машины и выполняющей определенную работу действиями человека внутри системы. Поведение эргамата описывается системой дифференциальных уравнений. Задача синтеза эргамата заключается в определении числа и состава входящих в систему элементов (включая и человека) и их функциональных обязанностей.
Для решения задачи определяются обобщенные рабочие характеристики (ОРХ) оператора. Окончательный вариант структуры эргамата выбирают оптимизацией общецелевой системной функции при выполнении ограничений, накладываемых на соответствующие временные, точностные и надежностные ОРХ. Концепция нашла применение для расчета и оптимизации непрерывных систем ручного управления, в частности транспортных систем.
К кибернетическому направлению можно отнести и концепцию обеспечения качества функционирования (ОКФ) эргатических систем [102, 214]. Задача обеспечения требуемого уровня качества заключается в оценке (с помощью процедуры контроля) и устранении (путем проведения профилактического обслуживания) причин и условий, которые его снижают (не обеспечивают). При этом возникает задача по определению, когда и какие мероприятия следует проводить, чтобы получать максимально возможный эффект от применения СЧМ по своему назначению в течение заданного времени ее функционирования.
Последовательность мероприятий по ОКФ эргатических систем следующая. В начальный момент качество функционирования системы соответствует требуемому уровню, т. е. технические звенья и операторы находятся в работоспособном состоянии и готовы к выполнению задания. Через некоторое время необходимо провести контроль параметров функционирования системы (как техники, так и операторов). Если к этому времени система функционирует безотказно, то следует проводить плановый контроль. Если же возникли отказы, то следует осуществлять профилактические воздействия, которые должны полностью восстановить требуемый уровень качества. К таким воздействиям относятся: ремонт или замена отказавших технических звеньев, восстановление работоспособности операторов, исправление ошибок их деятельности, профессиональный отбор и обучение персонала и т. п.
Рассмотренный цикл повторяется заново до тех пор, пока время функционирования системы не достигнет заданного значения.
К этому же направлению относится и функционально-структурная теория эргатических систем. Основу ее составляет обобщенный структурный метод (ОСМ) оценки эффективности, качества и надежности СЧМ [35, 137]. Сущность метода заключается в том, что любую деятельность можно расчленить на мельчайшие элементы — типовые функциональные единицы (ТФЕ). На основании ТФЕ разработаны типовые функциональные структуры (ТФС), которые служат уже не для описания отдельных действий, а для описания фрагментов деятельности, присущих самым разнообразным системам. С помощью ТФС может быть описана деятельность в целом. В рамках метода получены математические модели, позволяющие оценить показатели качества функционирования эргатической системы и определить ту ее структуру, для которой эти показатели будут наилучшими. Дальнейшее развитие метода состоит в том, что элементы планирования и принятия решений моделируются с помощью метода ситуационного управления, а исполнение — с помощью ОСМ.
Такой подход носит название комплексного обобщенного структурного метода (КОСМ), обеспечивающего представление функционирования эргатических систем в виде функционально-семантических сетей. Однако этот подход находится еще в стадии разработки.
Одной из наиболее работоспособных является системная концепция анализа и оценки надежности СЧМ [185, 186]. Она базируется на восьми частных концепциях: аппаратурной безотказности применяемых технических средств, полной аппаратурной безотказности, восстанавливающего оператора, подготавливающего оператора, управляющего оператора, дежурного оператора, биологически надежного оператора. Целесообразность использования конкретной концепции определяется видом решаемой задачи и необходимостью учета тех или иных свойств оператора и техники и режимов работы СЧМ. При этом каждая последующая концепция учитывает более полный набор свойств и дает более полные оценки надежности СЧМ. Так, при оценке только аппаратурной безотказности достаточно использовать первые две концепции (влияние оператора на надежность СЧМ при этом не учитывается); для обеспечения ремонтопригодности оборудования необходимо использовать уже третью концепцию и т. д. Более высокие концепции обеспечивают расчет надежности СЧМ в целом, учитывая и готовность операторов, и подверженность их ошибкам и биологическим отказам организма. Для каждой концепции разработаны формулы для определения надежности СЧМ. Сложность деятельности (учет различных факторов) учитывается с помощью поправочных коэффициентов, степень детализации которых зависит от вида учитываемых факторов сложности.
Совместно с разработанной программой обеспечения эргономического качества СЧМ и методикой расчета времени и вероятности безошибочного выполнения алгоритма оператором (способ статистического эталона) данный подход может быть применен для анализа, описания и проектирования довольно широкого круга систем «человек—машина».
В рамках кибернетического направления разработана и успешно применяется на практике и системно-лингвистическая концепция [196]. Сущность концепции состоит в том, что на ранних этапах проектирования используется классификация систем отображения информации по внешним характеристикам, языкам обмена и методам технической реализации. На последующих этапах применяются специальные методы и языки описания действий человека. Далее проводятся психологические эксперименты, в которых выявляются ход и особенности решения человеком критических задач и наконец строится трансформационная модель принятия решений, в составе которой используются формализмы лингвистической семантики. Посредством модели сравниваются различные варианты построения систем отображения информации, а также конструкции языков обмена и процедуры диалога «человек—ЭВМ».
Концепция нашла применение в трех основных областях: для построения щитов управления сложными автоматизированными технологическими процессами; для создания учебно-тренировочных центров и для проектирования диалога «человек—ЭВМ». На ее основе возник алгоритмический подход в подготовке операторов: основным стержнем подготовки является овладение оператором приемами и навыками принятия оперативных решений. При этом знания должны способствовать решениям, носить направленно оперативный характер, навыки взаимодействия с приборами и органами управления — дополнять, а не затемнять содержание оперативных решений. Разработан ряд форм подготовки операторов, в частности, карты наблюдений, деревья оценки ситуаций, планы действий, игровые сценарии тренировок [197].
На основе концепции проведено инженерно-психологическое проектирование щитов управления для ряда тепловых и атомных энергоблоков, учебно-тренировочных центров, различного рода диалоговых систем — для научных экспериментов, автоматизации проектирования и обучения.
Определенный интерес представляет также разработанная Г.В. Дружининым статистическая теория процессов выполнения работы [42]. Она используется для априорной оценки времени выполнения работы в условиях действия на работников различного рода случайных факторов. В инженерной психологии данная теория применяется для описания процессов переработки информации оператором и определения времени τоп решения им той или иной задачи управления при следующих предположениях:
■ средняя скорость переработки информации V в пределах одной задачи постоянна, но в силу случайных факторов может меняться от задачи к задаче;
■ объем информации, перерабатываемой при решении каждой задачи постоянен и равен h;
■ величина V распределена по нормальному закону с параметрами mv и σv.
Зависимость количества перерабатываемой информации от времени выражается формулой H(t)=Vt. Эта зависимость является веерной случайной функции, ее графическое изображение приведено на рис. 3.4. Для таких функций закон распределения времени топ, необходимого для достижения величиной H(t) заданного значения h представляет собой альфа-распределение. Оно характеризуется двумя параметрами: а и р. Первый из них является безразмерной величиной и представляет собой среднюю относительную скорость переработки информации, параметр Р имеет размерность времени и называется относительным объемом работы. При а>3 что характерно для большинства видов операторской деятельности, параметры альфа-распределения можно оценить по формулам
где τоп στ, — соответственно среднее значение и среднеквадратическое отклонение времени решения задачи оператором.
Использование этих соотношений позволяет получить функцию плотности распределения времени хоп. В инженерной психологии статистическая теория выполнения работы используется для описания процессов переработки информации при сделанных выше допущениях в условиях действия ряда случайных факторов. Наибольшее применение эта теория получила для определения времени топ, а также определения надежности оператора, работающего в условиях временных ограничений.
Рис. 3.4. Веерная случайная функция времени.
В рамках кибернетического направления В.Г. Денисовым разработана концепция совместимости оператора, машин и среды в рамках единой системы «человек—машина» [38]. Согласно концепции основным системообразующим фактором в СЧМ является совместимость составляющих систему компонентов. Рассматриваются следующие виды совместимости:
■ информационная, предполагающая соответствие циркулирующих в системе информационных потоков возможностям отдельных ее компонентов по приему и переработке этих потоков;
■ энергетическая, предусматривающая совместимость отдельных компонентов СЧМ с точки зрения производимых усилий;
■ пространственно-антропометрическая, определяемая соответствием компонентов системы пространственным характеристикам (размеры, расположение в пространстве, досягаемость и т. п.);
■ технико-эстетическая, заключающаяся в соответствии внешнего вида и удобства работы с изделием эстетическим вкусам человека;
■ биофизическая, предусматривающая совместимость компонентов системы с точки зрения осуществления управляющих движений.
В дальнейшем на основе этой концепции Е.М. Хохловым была выдвинута в качестве центральной проблемы категория «взаимодействие»; с помощью которой решалась задача учета большого количества факторов, влияющих на деятельность оператора [189]. При этом автор отрицательно относится к идее выделения психологических факторов сложности [17], считая ее неплодотворной. На основе проблемы взаимодействия разработан комплексный операционный анализ эксплуатационных процессов, основу которого составляет кольцевой (спиральный) анализ отрицательных процессов в СЧМ. К отрицательным процессам относятся потоки отказов и дефектов техники, поток ошибок операторов, поток эксплуатационных замечаний. Выявленные такие потоки в ряде СЧМ (на воздушном транспорте, в прессово-кузнечном оборудовании и др.) были обработаны методом логического центрирования, на основании чего построены статистические ряды динамики, столбиковые диаграммы, определены основные статистические индексы [63]. Полученные данные используются при модернизации существующих и проектировании вновь создаваемых СЧМ аналогичного назначения.
Рассмотренные концепции, несмотря на их различия между собой, нашли в той или иной степени применение при решении ряда практических задач. Их применение дало и существенный экономический эффект [18, 35, 42, 53, 102, 137, 169, 189, 197]. Однако в них вне поля зрения остались особенности функционирования систем «человек—машина», деятельность оператора в которых протекает по схеме массового обслуживания. Этот класс СЧМ условно называется автоматизированными системами массового обслуживания (АСМО). Их особенности рассматриваются в специальной концепции анализа и проектирования АСМО [45, 167].
Эта концепция, не отвергая и не противореча рассмотренным выше концепциям, дополняет их учетом особенностей деятельности оператора в условиях потока сигналов, что является отличительной чертой систем массового обслуживания. В основе концепции лежит положение, выдвинутое Ю.М. Забродиным о том, что основная проблема в проектировании деятельности оператора состоит в оценке возможностей ее выполнения [142]. Тем самым подчеркивается, что основные проектные решения принимаются в результате инженерно-психологической оценки. Учитывая специфику деятельности оператора в АСМО (работа в условиях потока сигналов) основное внимание в концепции уделяется динамической оценке показателей деятельности и состояния оператора.
С учетом сказанного структурная схема проектирования деятельности оператора имеет вид, показанный на рис. 3.5. Основу проекта составляет анализ деятельности в условиях потока сигналов (особенности такой деятельности рассмотрены в следующей главе). На основании анализа проводится инженерно-психологическая оценка деятельности, по результатам которой и принимаются основные проектные решения. Оценка является важнейшим и завершающим этапом каждой из стадий проектирования системы.
Инженерно-психологическая оценка проводится по четырем основным направлениям (рис. 3.5). Она включает в себя как оценку достигнутых результатов, так и оценку тех затрат, которыми эти результаты достигаются.
Рис. 3.5. Структурная схема анализа и проектирования АСМО.
Оценка результатов состоит в определении соответствия техники возможностям человека по обработке потока сигналов и определении основных показателей качества деятельности (надежность, быстродействие) с последующей оценкой их влияния на соответствующие показатели всей системы.
Помимо оценки достигнутых результатов необходимо провести и оценку произведенных при этом затрат. Они включают в себя прежде всего экономические затраты, это направление носит название экономической оценки СЧМ. Однако для СЧМ понятие затрат имеет еще один смысл. В данном случае речь идет о затратах человеческого организма, об определении психофизиологической «цены» деятельности. Эта задача решается путем контроля и диагностики функционального состояния оператора. Наибольшее значение при этом имеет применение бесконтактных методов.
Основным методом проведения оценки является математическое моделирование деятельности оператора. Разрабатываемые для этой цели модели относятся к классу моделей обслуживания.
Рассмотренные концепции носят довольно общий, системный характер и применяются для решения задач анализа и проектирования деятельности оператора в целом. Помимо них разработан и ряд частных концепций, применя
Дата добавления: 2017-08-01; просмотров: 585;