Компоновочные схемы модулей СВЧ и АФАР

4.8.1.Особенности компоновки микроэлектронных СВЧ устройств обусловлены следующими специфичными требованиями к их работе :

-согласование входов и выходов МСБ по волновому сопротивлению;

-обеспечение повышенной теплопередачи от МСБ к основанию,

-надежное экранирование схем и отсутствие паразитных реактивных составляющих.

 

4.8.2. Поскольку МСБ СВЧ представляют собой отдельные чаще всего несимметричные микрополосковые линии с активными элементами, то в первую очередь, обратная сторона подложки должна быть металлизирована. Во-вторых , для электрического согласования по волновому сопротивлению линий передачи МСБ должна быть осуществлена стыковка МСБ по принципу “непрерывной микросхемы”. Зазоры между торцами подложек, а также разность по высоте и несоосность полосковых линий в плане должны удовлетворять следующим условиям : для сантиметрового диапазона – не более 0,05мм , для дециметрового диапазона – не более 0,1 мм.

 

4.8.3. Для обеспечения повышения теплопередачи к основанию применяют вместо ситалловых поликоровые подложки часто с брокеритовыми вставками- основаниями под высокочастотные транзисторы. Поликор и брокерит-9 имеют по сравнению с ситаллом теплопроводность соответственно примерно в 30 и 100 раз большую. Это позволяет снизить перегревы МСБ с десятков до единиц . Применение полностью брокеритовых подложек нетехнологично. Тепловой контакт МСБ с основанием осуществляется либо пайкой либо теплопроводящим клеем.

 

4.8.4. Надежное экранирование схем СВЧ обеспечивается помещением их в корпус-экран. При этом, чтобы последний не влияет на параметры микрополосковых линий, допускается минимальное расстояние его от поверхностей МСБ не менее 3,5мм. Это естественно снижает плотность упаковки и увеличивает коэффициент дезинтеграции конструкций.

Для устранения паразитных реактивных составляющих соединения линий МСБ СВЧ запрещается выполнять тонкими проволочными проводниками. Эти соединения обычно осуществляют полосками медной фольги толщиной 0,02мм и шириной 0,4мм внахлест между стыкуемыми МСБ. Электрические соединения между микрополосковыми МСБ, расположенными с двух сторон основания- теплоотвода, выполняют переходом с одной стороны на другую с помощью диэлектрических втулок с контактными штырями.

 

4.8.5. Таким образом, требования планарной непрерывной схемы, расположения ее в виде цепочки (“линейки”) для независимой передачи сигнала, необходимости экранирования и повышенного теплоотвода диктуют необходимость выполнения таких конструкций в виде небольших по размерам вытянутых корпусированных прямоугольников, или модулей СВЧ.

 

4.8.6.На рис 4.31 показана структурная схема, внешний вид АФАР и приемопередающего модуля (проект MERA). С торцов модуль имеет высокочастотные и низкочастотный разъемы : один ВЧ разъем для антенны, два ВЧ разъема –для каналов приема и передачи СВЧ сигнала, НЧ разъем- для питания и схем управления фазой, выполненных на ситалловых подложках

Рис.4.31 Структурная схема (а), внешний вид АФАР и приемопередающего модуля (б) (проект MERA)

4.8.7.На рис 4.32 показана компоновка СВЧ 4-х каскадного усилителя мощности СВЧ на двух поликоровых подложках с брокеритовыми вставками под ВЧ транзисторы. На рисунке хорошо видны состав и стыковка МСБ и их установка на основании- теплоотводе.

 

Рис 8.32 Четырехкаскадный усилитель мощности СВЧ

 

4.8.8. В состав конструкции АФАР входят излучатели, приемопередающие модули, схемы разводки для синхронизации сигналов СВЧ источников, схема сложения принимаемых сигналов и т.п.

 

4.8.9. Сравнительный анализ основных показателей АФАР и обычных антенн:

-КПД их примерно равные (обычные антенны –7%, АФАР –6%);

-точность и скорость определения и сопровождения цели с помощью АФАР выше, чем у обычных антенн (длительность переходных процессов в диодных переключателях фазы составляет сек.);

-помехозащищенность АФАР выше за счет возможности управления распределением поля по раскрыву, что позволяет практически избавиться от боковых лепестков диаграммы напряженности АФАР;

-надежность АФАР предположительно должна быть на порядок выше передающего тракта с “зеркальной” антенной;

-c помощью АФАР за счет оптимальной фазировки излучателей возможно получение антенных устройств больших раскрывов без потерь в коэффициенте усиления (для обычных антенн G 60дБ, для АФАР G 70дБ).

 

4.8.10. Таким образом, антенно-фазированная активная решетка представляет собой поверхность (в частном случае плоскость) с помещенными на нее по определенному закону излучателями.

 

Контрольные вопросы.

1. Признаки цифровых функциональных ячеек?

2. Какими признаками отличается ФЯ IV поколения от ФЯ III поколения?

3. От какого фактора зависит конструктивное исполнение соединителя в нижней части ФЯ?

4. Какие типы корпусов ИС, устанавливаемых в ФЯ III поколения Вы знаете?

5. Какие типы корпусов ИС отвечают требованиям “поверхностного монтажа”?

6. В какой аппаратуре применяются разъемы в ФЯ в виде печатных концевых контактов?

7. Какими параметрами характеризуются разъемы ГРПМ?

8. В чем разница разъемов ГРПМ и ГРПП?

9. Варианты компоновок блоков МЭА III поколения.

10. Особенности блоков кассетной компоновки.

11. Какими признаками характеризуются ФЯ цифровой МЭА IV поколения?

12. Какие Вы знаете компоновки ФЯ с высоким тепловыделением?

13. Для чего служат рамки в ячейках?

14. С какой стороны ФЯ располагают навесные дискретные ЭРЭ? От дискретных ЭРЭ можно полностью отказаться?

15. Каким способом реализуют соединение МСБ с ПП?

16. Какой хладоагент применяется в ФЯ IV поколения с П-образной пластиной?

17. Какими способами осуществляется герметизация корпуса в местах нахождения межблочных разъемов в блоках цифровой МЭА IV поколения?

18. Каким целям на крышке корпуса служит тепловая канавка?

19. Крышка и основание корпуса выполняется из алюминиевых сплавов, однако паяный шов между крышкой и основанием выполняют припоем ПОС-61. Как это возможно?

20. Как выполняется корпус высокой тепловой напряженности?

21. Каким целям служат титановые или стальные втулки в бобышках корпуса?

22. Зачем укладывается в паяный шов стальная проволока?

23. Для чего служит резиновая прокладка между крышкой и основанием корпуса? Каким требованиям она должна отвечать?

24. Каким образом крепится моноблок цифровой МЭА IV поколения на объекте?

25. Какую роль выполняет ремень-матрица в моноблоке?

26. Зачем внутрь герметичного корпуса закачивается инертный газ- азот?

27. Характерные особенности конструкций аналоговых ФЯ III и IV поколений?

28. Как выполняется частотно-избирательные узлы в приемоусилительных ячейках?

29. Почему аналоговые ФЯ используют линейную компоновку?

30. Характерные компоновочные схемы блоков аналоговой МЭА.

31. В чем заключаются потери в компоновочных показателях в блоках аналоговой МЭА по сравнению с блоками цифровой МЭА?

32. Какие Вы знаете недостатки блоков цифровой МЭА?

33. Трудности компоновки МСБ в модулях СВЧ.

34. Какие цели преследует принцип компоновки “непрерывной микросхемы” в модулях СВЧ диапазона?

35. Какие методы проверки герметичности Вы знаете?

36. Какие методы изготовления корпусов Вы знаете?

37. Характерные схемы соединения уголкового железа в углах каркасов шкафов и стоек.

38. Почему вторичные источники питания (ВИП), как правило, располагают в нижней секции пультов, шкафов и стоек?









Дата добавления: 2017-06-02; просмотров: 877;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.