Канонические диаграммы языка UML и особенности их графического представления.

Вариант 1 из книги Орлова

UML — стандартный язык для написания моделей анализа, проектирования и реализации объектно-ориентированных программных систем. UML может использоваться для визуализации, спецификации, конструирования и документирования результатов программных проектов. UML — это не визуальный язык программирования, но его модели прямо транслируются в текст на языках программирования (Java, C++, Visual Basic, Ada 95, Object Pascal) и даже в таблицы для реляционной БД.

Словарь UML образуют три разновидности строительных блоков:

Предметы — это абстракции, которые являются основными элементами в модели, отношения связывают эти предметы, диаграммы группируют коллекции предметов. В UML имеются четыре разновидности предметов:

Структурные предметы (являются существительными в UML-моделях). Они представляют статические части модели — понятийные или физические элементы. Существует восемь разновидностей структурных предметов: класс, интерфейс, кооперация (сотрудничество), актер, элемент Use Case(прецедент), активный класс, компонент и узел.

Предметы поведения (динамические части UML-моделей). Они являются глаголами моделей, представлением поведения во времени и пространстве. Существует две основные разновидности предметов поведения: взаимодействие и конечный автомат.

Группирующие предметы (организационные части UML-моделей). Это ящики, по которым может быть разложена модель. Предусмотрена одна разновидность группирующего предмета — пакет.

Поясняющие предметы (разъясняющие части UML-моделей). Они являются замечаниями, которые можно применить для описания, объяснения и комментирования любого элемента модели. Предусмотрена одна разновидность поясняющего предмета — примечание.

 

Эти предметы являются базовыми объектно-ориентированными строительными блоками. Они используются для написания моделей.

 

Отношения. В UML имеются четыре разновидности отношений:

зависимость ( ) — семантическое отношение между двумя

предметами, в котором изменение в одном предмете (независимом предмете) может влиять на семантику другого предмета (зависимого предмета);

ассоциация ( )структурное отношение, которое описывает

набор связей, являющихся соединением между объектами.;

обобщение ( )— отношение специализации/обобщения, в котором объекты специализированного элемента (потомка, ребенка) могут заменять объекты обобщенного элемента (предка, родителя).;

реализация ( ) семантическое отношение между

классификаторами, где один классификатор определяет контракт, который другой классификатор обязуется выполнять (к классификаторам относят классы, интерфейсы, компоненты, элементы Use Case, кооперации).

Эти отношения являются базовыми строительными блоками отношений. Они используются при написании моделей.

Диаграммы— графическое представление множества элементов, наиболее часто изображается как связный граф из вершин (предметов) и дуг (отношений).

 

Диаграммы в UML

Диаграммы рисуются для визуализации системы с разных точек зрения, затем они отображаются в систему. Обычно диаграмма дает неполное представление элементов, которые составляют систему. Хотя один и тот же элемент может появляться во всех диаграммах, на практике он появляется только в некоторых диаграммах. Теоретически диаграмма может содержать любую комбинацию предметов и отношений, на практике ограничиваются малым количеством комбинаций, которые соответствуют пяти представлениям архитектуры ПС. По этой причине UML включает девять видов диаграмм:

диаграммы классов;

диаграммы объектов;

диаграммы Use Case (диаграммы прецедентов);

диаграммы последовательности;

диаграммы сотрудничества (кооперации);

диаграммы схем состояний;

диаграммы деятельности;

компонентные диаграммы;

диаграммы размещения (развертывания).

Диаграмма классов показывает набор классов, интерфейсов, сотрудничеств и их отношений. При моделировании объектно-ориентированных систем диаграммы классов используются наиболее часто. Диаграммы классов обеспечивают статическое проектное представление системы. Диаграммы классов, включающие активные классы, обеспечивают статическое представление процессов системы.

Диаграмма объектов показывает набор объектов и их отношения. Диаграмма объектов представляет статический «моментальный снимок» с экземпляров предметов, которые находятся в диаграммах классов. Как и диаграммы классов, эти диаграммы обеспечивают статическое проектное представление или статическое представление процессов системы (но с точки зрения реальных или фототипичных случаев).

Диаграмма Use Case (диаграмма прецедентов) показывает набор элементов Use Case, актеров и их отношений. С помощью диаграмм Use Case для системы создается статическое представление Use Case. Эти диаграммы особенно важны при организации и моделировании поведения системы, задании требований заказчика к системе.

Диаграммы последовательности и диаграммы сотрудничества — это разновидности диаграмм взаимодействия.

Диаграмма взаимодействия показывает взаимодействие, включающее набор объектов и их отношений, а также пересылаемые между объектами сообщения. Диаграммы взаимодействия обеспечивают динамическое представление системы.

Диаграмма последовательности — это диаграмма взаимодействия, которая выделяет упорядочение сообщений по времени.

Диаграмма сотрудничества (диаграмма кооперации) — это диаграмма взаимодействия, которая выделяет структурную организацию объектов, посылающих и принимающих сообщения. Диаграммы последовательности и диаграммы сотрудничества изоморфны, что означает, что одну диаграмму можно трансформировать в другую диаграмму.

Диаграмма схем состояний показывает конечный автомат, представляет состояния, переходы, события и действия. Диаграммы схем состояний обеспечивают динамическое представление системы. Они особенно важны при моделировании поведения интерфейса, класса или сотрудничества. Эти диаграммы выделяют такое поведение объекта, которое управляется событиями, что особенно полезно при моделировании реактивных систем.

Диаграмма деятельности — специальная разновидность диаграммы схем состояний, которая показывает поток от действия к действию внутри системы. Диаграммы деятельности обеспечивают динамическое представление системы. Они особенно важны при моделировании функциональности системы и выделяют поток управления между объектами.

Компонентная диаграмма показывает организацию набора компонентов и зависимости между компонентами. Компонентные диаграммы обеспечивают статическое представление реализации системы. Они связаны с диаграммами классов в том смысле, что в компонент обычно отображается один или несколько классов, интерфейсов или коопераций.

Диаграмма размещения (диаграмма развертывания) показывает конфигурацию обрабатывающих узлов периода выполнения, а также компоненты, живущие в них. Диаграммы размещения обеспечивают статическое представление размещения системы. Они связаны с компонентными диаграммами в том смысле, что узел обычно включает один или несколько компонентов.

Вариант 2 из интернета

Канонические диаграммы языка UML

В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций, получивших название диаграмм.

Диаграмма (diagram) — графическое представление совокупности элементов модели в форме связного графа, вершинам и ребрам (дугам) которого приписывается определенная семантика. Нотация канонических диаграмм - основное средство разработкимоделей на языке UML.

В нотации языка UML определены следующие виды канонических диаграмм:

 

вариантов использования (use case diagram)

классов (class diagram)

кооперации (collaboration diagram)

последовательности (sequence diagram)

состояний (statechart diagram)

деятельности (activity diagram)

компонентов (component diagram)

развертывания (deployment diagram) Перечень этих диаграмм и их названия являются каноническими в том смысле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы.

Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языкаUML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех

остальных диаграмм. Диаграмма классов, по своей сути, логическая модель, отражающая статические аспекты структурного построения сложной системы.

Диаграммы кооперации и последовательностей представляют собой разновидности логической модели, которые отражают динамические аспекты функционирования сложной системы. Диаграммы состояний и деятельности предназначены для моделирования поведения системы. И, наконец, диаграммы компонентов и развертывания служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели.

В целом интегрированная модель сложной системы в нотации UML может быть представлена в виде совокупности указанных выше диаграмм (рис. 2.7).

 

Рис. 2.7.Интегрированная модель сложной системы в нотации UML

Кроме графических элементов, которые определены для каждой канонической диаграммы, на них может быть изображена текстовая информация, которая расширяет семантику базовых элементов. В языке UML предусмотрены три специальных механизма расширения, которые включают в себя следующие конструкции.

Стереотип (stereotype) — новый тип элемента модели, который расширяет семантику метамодели. Стереотипы должны основываться на уже существующих и описанных в метамодели языка UML типах или классах.

Стереотипы предназначены для расширения именно семантики, но не структуры уже описанных типов или классов. Некоторые стереотипы предопределены в языке UML, другие могут быть указаны разработчиком. На диаграммах изображаются в форме текста, заключенного в угловые кавычки. Предопределенные стереотипы являются ключевыми словами языка UML, которые используются на канонических диаграммах на языке оригинала без их перевода.

Помеченное значение (tagged value) — явное определение свойства как пары "имя – значение". В помеченном значении само имя называют тегом (tag).

Помеченные значения на диаграммах изображаются в форме строки текста специального формата, заключенного в фигурные скобки. При этом используется следующий формат записи: {тег = значение}. Теги встречаются в нотации языка UML, но ихопределение не является строгим, поэтому теги могут быть указаны самим разработчиком.

Ограничение (constraint) — некоторое логическое условие, ограничивающее семантику выбранного элемента модели .

Как правило, все ограничения специфицируются разработчиком. Ограничения на диаграммах изображаются в форме строки текста, заключенного в фигурные скобки. Для формальной записи ограничений предназначен специальный язык объектных ограничений(Object Constraint Language, OCL), который является составной частью языка UML.

Особенности графического изображения диаграмм языка UML

Большинство перечисленных выше диаграмм являются в своей основе графами специального вида, состоящими из вершин в форме геометрических фигур, которые связаны между собой ребрами или дугами. Поскольку информация, которую содержит в себе граф, носит топологический характер, ни геометрические размеры, ни расположение элементов диаграмм не имеют принципиального значения.

Для диаграмм языка UML существуют три типа визуальных графических обозначений, которые важны с точки зрения заключенной в них информации:

Геометрические фигуры на плоскости, играющие роль вершин графов соответствующих диаграмм. При этом сами геометрические фигуры выступают в роли графических примитивов языка UML, а форма этих фигур (прямоугольник, эллипс) должна строго соответствовать изображению отдельных элементов языка UML (класс, вариант использования, состояние, деятельность). Графические примитивы языка UML имеют фиксированную семантику, переопределять которую пользователям не допускается. Графические примитивы должны иметь собственные имена, а, возможно, и другой текст, который содержится внутри границ соответствующих геометрических фигур или, как исключение, вблизи этих фигур.

Графические взаимосвязи, которые представляются различными линиями на плоскости. Взаимосвязи в языке UML обобщают понятие дуг и ребер из теории графов, но имеют менее формальный характер и более развитую семантику.

Специальные графические символы, изображаемые вблизи от тех или иных визуальных элементов диаграмм и имеющие характер дополнительной спецификации (украшений).

Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Отдельные элементы - с помощью геометрических фигур, которые могут иметь различную высоту и ширину с целью размещения внутри них других конструкций языка UML. Наиболее часто внутри таких символов помещаются строки текста, которые уточняют семантику или фиксируют отдельные свойства соответствующих элементов языка UML. Информация, содержащаяся внутри фигур, имеет значение для конкретной моделипроектируемой системы, поскольку регламентирует реализацию соответствующих элементов в программном коде.

Пути представляют собой последовательности из отрезков линий, соединяющих отдельные графические символы. При этом концевые точки отрезков линий должны обязательно соприкасаться с геометрическими фигурами, служащими для обозначения вершин диаграмм, как принято в теории графов. С концептуальной точки зрения путям в языке UML придается особое значение, поскольку это простые топологические сущности.

Отдельные части пути или сегменты могут не существовать вне содержащего их пути. Пути всегда соприкасаются с другими графическими символами на обеих границах соответствующих отрезков линий, т.е. пути не могут обрываться на диаграмме линией, которая не соприкасается ни с одним графическим символом. Как отмечалось выше, пути могут иметь в качестве окончания или терминатора специальную графическую фигуру – значок, который изображается на одном из концов линий.

Дополнительные значки или украшения представляют собой графические фигуры фиксированного размера и формы. Они не могут увеличивать свои размеры, чтобы разместить внутри себя дополнительные символы. Значки размещаются как внутри других графических конструкций, так и вне их. Примерами значков могут служить окончания связей элементов диаграмм или графические обозначения кванторов видимости атрибутов и операций классов.

Строки текста служат для представления различных видов информации в грамматической форме. Предполагается, что каждое использование строки текста должно соответствовать синтаксису в нотации языка UML. В отдельных случаях может быть реализован грамматический разбор этой строки, который необходим для получения дополнительной информации о модели. Например, строки текста в различных секциях обозначения класса могут соответствовать атрибутам этого класса или его операциям. На использование строк накладывается условие: требуется, чтобы семантика всех допустимых символов была заранее определена в языке UML или служила предметом его расширения в конкретной модели.

Рекомендации по графическому изображению диаграмм языка UML

При графическом изображении диаграмм следует придерживаться следующих основных рекомендаций:

Каждая диаграмма должна служить законченным представлением соответствующего фрагмента моделируемой предметной области. Речь идет о том, что в процессе разработки диаграммы необходимо учесть все сущности, важные с точки зрения контекста данной модели и диаграммы. Отсутствие тех или иных элементов на диаграмме служит признаком неполноты моделии может потребовать ее последующей доработки.

Все сущности на диаграмме модели должны быть одного уровня представления. Здесь имеется в виду согласованность не только имен одинаковых элементов, но и возможность вложения отдельных диаграмм друг в друга для достижения полноты представлений. В случае достаточно сложных моделей систем желательно придерживаться стратегии последовательного уточнения или детализации отдельных диаграмм.

Вся информация о сущностях должна быть явно представлена на диаграммах. В языке UML при отсутствии некоторых символов на диаграмме могут быть использованы их значения по умолчанию (например, в случае неявного указания видимости атрибутов и операций классов), тем не менее, необходимо стремиться к явному указанию свойств всех элементов диаграмм.

Диаграммы не должны содержать противоречивой информации.

Противоречивость модели может служить причиной серьезных проблем при ее реализации и последующем использовании на практике. Например, наличие замкнутых путей при изображении отношений агрегирования или композиции приводит к ошибкам в программном коде, который будет реализовывать соответствующие классы. Наличие элементов с одинаковыми именами и различными атрибутами свойств в одном пространстве имен также приводит к неоднозначной интерпретации и может быть источником проблем.

Каждая диаграмма должна быть самодостаточной для правильной интерпретации всех ее элементов и понимания семантики всех используемых графических символов. Любые пояснительные тексты, которые не являются собственными элементамидиаграммы (например, комментариями), не должны приниматься во внимание разработчиками. В то же время общие фрагментыдиаграмм могут уточняться или детализироваться на других диаграммах этого же типа, образуя вложенные или подчиненныедиаграммы. Таким образом, модель системы на языке UML представляет собой пакет иерархически вложенных диаграмм, детализация которых должна быть достаточной для последующей генерации программного кода, реализующего проект соответствующей системы.

Количество типов диаграмм для конкретной модели приложения строго не фиксировано. Для простых приложений нет необходимости строить все без исключения

типы диаграмм. Некоторые из них могут просто отсутствовать в проекте системы, и это не будет считаться ошибкой разработчика. Например, модель системы может не содержать диаграмму развертывания для приложения, выполняемого локально на компьютере пользователя. Важно понимать, что перечень диаграмм зависит от специфики конкретного проекта системы.

Любая модель системы должна содержать только те элементы, которые определены в нотации языка UML. Имеется в виду требование начинать разработку проекта, используя только те конструкции, которые уже определены в метамодели UML. Как показывает практика, этих конструкций вполне достаточно для представления большинства типовых проектов программных систем. И только при отсутствии необходимых базовых элементов языка UML следует использовать механизмы их расширения для адекватного представления конкретной модели системы. Не допускается переопределение семантики тех элементов, которые отнесены к базовой нотации метамодели языка UML.

В заключение этой лекции следует отметить, что наличие в инструментальных CASEсредствах встроенной поддержки визуализации

различных диаграмм языка UML позволяет в некоторой степени исключить ошибочное использование графических символов, а также контролировать уникальность имен элементов диаграмм. Однако, поскольку вся ответственность за окончательный контрольнепротиворечивости модели лежит на разработчике, необходимо помнить, что недостаточно формальный характер языка UML и возможность его расширения может служить источником потенциальных ошибок, которые в полном объеме вряд ли будут выявлены инструментальными средствами. Именно это обстоятельство требует от всех разработчиков глубокого знания нотации и семантики всех элементов языка UML.

 

 

Графическое изображение вариантов использования, актеров и отношений на диаграмме. Понятия бизнес-актера, сотрудника и бизнес варианта использования

Диаграмма вариантов использования как концептуальное представление бизнессистемы в процессе ее разработки.

Визуальное моделирование с использованием нотации UML можно представить как процесс поуровневого спуска от наиболее общей и абстрактной концептуальной модели исходной бизнес-системы к логической, а затем и к физической модели соответствующей программной системы. Для достижения этих целей вначале строится модель в форме так называемой диаграммы вариантов использования (use case diagram), которая описывает функциональное назначение системы или, другими словами, то, что бизнес-система должна делать в процессе своего функционирования.

Диаграмма вариантов использования (use case diagram) — диаграмма, на которой изображаются отношения между актерами и вариантами использования.

Диаграмма вариантов использования - это исходное концептуальное представление или концептуальная модель системы в процессе ее проектирования и разработки. Создание диаграммы вариантов использования имеет следующие цели:

Определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования системы

Сформулировать общие требования к функциональному поведению проектируемой системы

Разработать исходную концептуальную модель системы для ее последующей детализации в форме логических и физических моделей

Подготовить исходную документацию для взаимодействия разработчиков системы с ее заказчиками и пользователями

Назначение данной диаграммы состоит в следующем: проектируемая программная система представляется в форме так называемых вариантов использования, с которыми взаимодействуют внешние сущности или актеры. При этом актером или действующим лицом называется любой объект, субъект или система, взаимодействующая с моделируемой бизнес-системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая служит источником воздействия на моделируемую систему так, как определит разработчик. Вариант использования служит для описания сервисов, которые система предоставляет актеру. Другими словами каждый вариант использования определяет набор действий, совершаемый системой при диалоге с актером. При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой и собственно выполнение вариантов использования.

Рассматривая диаграмму вариантов использования в качестве модели бизнес-системы, можно ассоциировать ее с "черным ящиком". Концептуальный характер этой диаграммы проявляется в том, что подробная детализация диаграммы или включение в нее элементов физического уровня представления на начальном этапе проектирования скорее имеет отрицательный характер, поскольку предопределяет способы реализации поведения системы. Эти аспекты должны быть сознательно скрыты от разработчика на диаграмме вариантов использования.

В самом общем случае, диаграмма вариантов использования представляет собой граф специального вида, который является графической нотацией для представления конкретных вариантов использования, актеров и отношений между этими элементами. При этом отдельные элементы диаграммы заключают в прямоугольник, который обозначает границы проектируемой системы. В то же время отношения, которые могут быть изображены на данном графе, представляют собой только фиксированные типы взаимосвязей между актерами и вариантами использования, которые в совокупности описывают сервисы или функциональные требования к моделируемой системе.

Базовыми элементами диаграммы вариантов использования являются вариант использования и актер.

Вариант использования (use case) — внешняя спецификация последовательности действий, которые система или другая сущность могут выполнять в процессе взаимодействия с актерами.

Вариант использования представляет собой спецификацию общих особенностей поведения или функционирования моделируемой системы без рассмотрения внутренней структуры этой системы. Несмотря на то, что каждый вариант использования определяет последовательность действий, которые должны быть выполнены проектируемой системой при взаимодействии ее с соответствующим актером, сами эти действия не изображаются на рассматриваемой диаграмме.

Содержание варианта использования может быть представлено в форме дополнительного пояснительного текста, который раскрывает смысл или семантику действий при выполнении данного варианта использования. Такой пояснительный текст получил название текста-сценария или просто сценария. Далее в этой главе рассматривается один из шаблонов, который может быть рекомендован для написания сценариев вариантов использования.

Отдельный вариант использования обозначается на диаграмме эллипсом, внутри которого содержится его краткое имя в форме существительного (рис. 3.1, а) или глагола (рис. 3.1, б) с пояснительными словами. Сам текст имени варианта использования должен начинаться с заглавной буквы.

Имя (name) — строка текста, которая используется для идентификации любого элемента модели.

Рис. 3.1. Графическое обозначение варианта использования

Цель спецификации варианта использования заключается в том, чтобы зафиксировать некоторый аспект или фрагмент поведения проектируемой системы без указания особенностей реализации данной функциональности. В этом смысле каждый вариант использования соответствует отдельному сервису, который предоставляет моделируемая система по запросу актера, т. е. определяет один из способов применения системы. Сервис, который инициализируется по запросу актера, должен представлять собой законченную последовательность действий. Это означает, что после того как система закончит обработку запроса актера, она должна возвратиться в исходное состояние, в котором снова готова к выполнению следующих запросов.

Диаграмма вариантов использования содержит конечное множество вариантов использования, которые в целом должны определять все возможные стороны ожидаемого поведения системы. Для удобства множество вариантов использования может рассматриваться как отдельный пакет. Применение вариантов использования на всех этапах работы над проектом позволяет не только достичь требуемого уровня унификации обозначений для представления функциональности подсистем и системы в целом, но и является мощным средством последовательного уточнения требований к проектируемой системе на основе их итеративного обсуждения со всеми заинтересованными специалистами.

Примерами вариантов использования могут быть следующие действия: проверка состояния текущего счета клиента, оформление заказа на покупку товара, получение дополнительной информации о кредитоспособности клиента, отображение графической формы на экране монитора и другие действия.

Актер (actor) — согласованное множество ролей, которые играют внешние сущности по отношению к вариантам использования при взаимодействии с ними.

Актер представляет собой любую внешнюю по отношению к моделируемой системе сущность, которая взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей или решения частных задач. Каждый актер может рассматриваться как некая отдельная роль относительно конкретного варианта использования. Стандартным графическим обозначением актера на диаграммах является фигурка "человечка", под которой записывается имя актера (рис. 3.2).

Рис. 3.2. Графическое обозначение актера

В некоторых случаях актер может обозначаться в виде прямоугольника класса со стереотипом <<actor>> и обычными составляющими элементами класса. Имена актеров должны начинаться с заглавной буквы и следовать рекомендациям использования имен для типов и классов модели. При этом символ отдельного актера связывает соответствующее описание актера с конкретным именем.

Имя актера должно быть достаточно информативным с точки зрения семантики. Для этой цели подходят наименования должностей в компании (например, продавец, кассир, менеджер, президент). Не рекомендуется давать актерам имена собственные или названия моделей конкретных устройств, даже если это с очевидностью следует из контекста проекта. Дело в том, что одно и то же лицо может выступать в нескольких ролях и, соответственно, обращаться к различным сервисам системы.

Актеры используются для моделирования внешних по отношению к проектируемой системе сущностей, которые взаимодействуют с системой. В качестве актеров могут выступать другие системы, в том числе подсистемы проектируемой системы или ее отдельные классы. Важно понимать, что каждый актер определяет согласованное множество ролей, в которых могут выступать пользователи данной системы в процессе взаимодействия с ней. В каждый момент времени с системой взаимодействует вполне определенный пользователь, при этом он играет или выступает в одной из таких ролей. Наиболее наглядный пример актера — конкретный посетитель web-сайта в Интернет со своими параметрами аутентификации.

Поскольку в общем случае актер всегда находится вне системы, его внутренняя структура никак не определяется. Для актера имеет значение только его внешнее представление, т. е. то, как он воспринимается со стороны системы. Актеры взаимодействуют с системой посредством передачи и приема сообщений от вариантов использования. Сообщение представляет собой запрос актером сервиса от системы и получение этого сервиса. Это взаимодействие может быть выражено посредством ассоциаций между отдельными актерами и вариантами использования. Кроме этого, с актерами могут быть связаны интерфейсы, которые определяют, каким образом другие элементы модели взаимодействуют с этими актерами.

Отношения на диаграмме вариантов использования

Отношение (relationship) — семантическая связь между отдельными элементами модели.

Между элементами диаграммы вариантов использования могут существовать различные отношения, которые описывают взаимодействие экземпляров одних актеров и вариантов использования с экземплярами других актеров и вариантов. Один актер может взаимодействовать с несколькими вариантами использования. В этом случае этот актер обращается к нескольким сервисам данной системы. В свою очередь один вариант использования может взаимодействовать с несколькими актерами, предоставляя для всех них свой сервис.

В то же время два варианта использования, определенные в рамках одной моделируемой системы, также могут взаимодействовать друг с другом, однако характер этого взаимодействия будет отличаться от взаимодействия с актерами. Однако в обоих случаях способы взаимодействия элементов модели предполагают обмен сигналами или сообщениями, которые инициируют реализацию функционального поведения моделируемой системы.

В языке UML имеется несколько стандартных видов отношений между актерами и вариантами использования:

ассоциации (association relationship)

включения (include relationship)

расширения (extend relationship)

обобщения (generalization relationship)

При этом общие свойства вариантов использования могут быть представлены тремя различными способами, а именно — с помощью отношений включения, расширения и обобщения.

Отношение ассоциации – одно из фундаментальных понятий в языке UML и в той или иной степени используется при построении всех графических моделей систем в форме канонических диаграмм. Применительно к диаграммам вариантов использования ассоциация служит для обозначения специфической роли актера при его взаимодействии с отдельным вариантом использования. Другими словами, ассоциация специфицирует семантические особенности взаимодействия актеров и вариантов использования в графической модели системы. На диаграмме вариантов использования, так же как и на других диаграммах, отношение ассоциации обозначается сплошной линией между актером и вариантом использования. Эта линия может иметь некоторые дополнительные обозначения, например, имя и кратность (рис. 3.3).

Рис. 3.3. Пример графического представления отношения ассоциации между актером и вариантом использования

В контексте диаграммы вариантов использования отношение ассоциации между актером и вариантом использования может указывать на то, что актер инициирует соответствующий вариант использования. Такого актера называют главным. В других случаях подобная ассоциация может указывать на актера, которому предоставляется справочная информация о результатах функционирования моделируемой системы. Таких актеров часто называют второстепенными. Более детальное описание семантических особенностей отношения ассоциации будет дано при рассмотрении других диаграмм в последующих лекциях.

Включение (include) в языке UML — это разновидность отношения зависимости между базовым вариантом использования и его специальным случаем. При этом отношением зависимости (dependency) является такое отношение между двумя элементами модели, при котором изменение одного элемента (независимого) приводит к изменению другого элемента (зависимого).

Отношение включения устанавливается только между двумя вариантами использования и указывает на то, что заданное поведение для одного варианта использования включается в качестве составного фрагмента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.

Так, например, отношение включения, направленное от варианта использования "Предоставление кредита в банке" к варианту использования "Проверка платежеспособности клиента", указывает на то, что каждый экземпляр первого варианта использования всегда включает в себя функциональное поведение или выполнение второго варианта использования. В этом смысле поведение второго варианта использования является частью поведения первого варианта использования на данной диаграмме. Графически данное отношение обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от базового варианта использования к включаемому варианту использования. При этом данная линия помечается стереотипом <<include>>, как показано на рис. 3.4.

Рис. 3.4. Пример графического изображения отношения включения между вариантами использования

Семантика этого отношения определяется следующим образом. Процесс выполнения базового варианта использования включает в себя как собственное подмножество последовательность действий, которая определена для включаемого варианта использования. При этом выполнение включаемой последовательности действий происходит всегда при инициировании базового варианта использования.

Один вариант использования может входить в несколько других вариантов, а также содержать в себе другие варианты. Включаемый вариант использования является независимым от базового варианта в том смысле, что он предоставляет последнему инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант зависит только от результатов выполнения включаемого в него варианта использования, но не от структуры включаемых в него вариантов.

Отношение расширения (extend) определяет взаимосвязь базового варианта использования с другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении дополнительных условий.

В языке UML отношение расширения является зависимостью, направленной к базовому варианту использования и соединенной с ним в так называемой точке расширения. Отношение расширения между вариантами использования обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от того варианта использования, который является расширением для базового варианта использования.

Данная линия со стрелкой должна быть помечена стереотипом <<extend>>, как показано на рис. 3.5.

Рис. 3.5. Пример графического изображения отношения расширения между вариантами использования

В изображенном фрагменте имеет место отношение расширения между базовым вариантом использования "Предоставление кредита в банке" и вариантом использования "Предоставление налоговых льгот". Это означает, что свойства поведения первого варианта использования в некоторых случаях могут быть дополнены функциональностью второго варианта использования. Для того чтобы это расширение имело место, должно быть выполнено определенное логическое условие данного отношения расширения.

Отношение расширения позволяет моделировать таким образом, что один из вариантов использования должен присоединять к своему поведению дополнительное поведение, определенное для другого варианта использования. В то же время данное отношение всегда предполагает проверку условия и ссылку на точку расширения в базовом варианте использования. Точка расширения определяет место в базовом варианте использования, в которое должно быть помещено расширение при выполнении соответствующего логического условия. При этом один из вариантов использования может быть расширением для нескольких базовых вариантов, а также иметь в качестве собственных расширений другие варианты. Базовый вариант использования не зависит от своих расширений.

Семантика отношения расширения определяется следующим образом. Если базовый вариант использования выполняет некоторую последовательность действий, которая определяет его поведение, и при этом имеется точка расширения на экземпляр другого варианта использования, которая является первой из всех точек расширения у базового варианта, то проверяется логическое условие данного отношения. Если это условие выполняется, исходная последовательность действий расширяется посредством включения действий другого варианта использования. Следует заметить, что условие отношения расширения проверяется лишь один раз — при первой ссылке на точку расширения, и если оно выполняется, то все расширяющие варианты использования вставляются в базовый вариант.

Два и более актера могут иметь общие свойства, т. е. взаимодействовать с одним и тем же множеством вариантов использования одинаковым образом. Такая общность свойств и поведения представляется в виде отношения обобщения с другим, возможно, абстрактным актером, который моделирует соответствующую общность ролей.

Графически отношение обобщения обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования (рис. 3.6). Эта линия со стрелкой имеет специальное название — стрелка-обобщение.

Рис. 3.6. Пример графического изображения отношения обобщения между вариантами использования

В данном примере отношение обобщения указывает на то, что вариант использования "Предоставление кредита корпоративным клиентам" - специальный случай варианта использования "Предоставление кредита клиентам банка". Другими словами, первый вариант использования является специализацией второго варианта использования. При этом вариант использования "Предоставление кредита клиентам банка" еще называют предком или родителем по отношению к варианту использования "Предоставление кредита корпоративным клиентам", а последний вариант называют потомком по отношению к первому варианту использования. Следует подчеркнуть, что потомок наследует все свойства поведения своего родителя, а также может обладать дополнительными особенностями поведения.

Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми особенностями поведения родительских вариантов. При этом дочерние варианты использования участвуют во всех отношениях родительских вариантов. В свою очередь, дочерние варианты могут наделяться новыми свойствами поведения, которые отсутствуют у родительских вариантов использования, а также уточнять или модифицировать наследуемые от них свойства поведения.

Дополнительные обозначения языка UML для бизнес-моделирования

Язык UML включает в себя специальные механизмы расширения, которые позволяют ввести в рассмотрение дополнительные графические обозначения, ориентированные для решения задач из определенной предметной области. Примеры подобных обозначений, которые используются для моделирования бизнес-систем и могут быть изображены на диаграммах вариантов использования: бизнес-актер, сотрудник и бизнес - вариант использования.

Бизнес-актер (business actor) – индивидуум, группа, организация, компания или система, которые взаимодействуют с моделируемой бизнес-системой, но не входят в нее, т.е. не являются частью моделируемой системы.

Графическое изображение бизнес-актера приводится на рис. 3.7, а. Примерами бизнесактеров являются клиенты, покупатели, поставщики, партнеры. Общее свойство бизнесактеров состоит в том, что они являются инициаторами или клиентами бизнес-процессов моделируемой системы.

Сотрудник (business worker) – индивидуум, который действует внутри моделируемой бизнес-системы, взаимодействует с другими сотрудниками и является участником бизнеспроцесса моделируемой системы.

Графическое изображение сотрудника приводится на рис. 3.7, б. Примерами сотрудников являются менеджеры, администраторы, кассиры, инженеры. Общее свойство сотрудников заключается в том то, что они являются субъектами и входят в состав моделируемой системы.

Бизнес-вариант использования (business use case)вариант использования, определяющий последовательность действий моделируемой системы, направленных на выполнение отдельного бизнес-процесса.

Графическое изображение бизнес-варианта использования приводится на рис. 3.7, в. Общее свойство бизнес-вариантов использования состоит в том, что они являются концептуальной моделью отдельных бизнес-процессов моделируемой системы.

Рис. 3.7. Графические изображения бизнес-актера (а), бизнес-сотрудника (б) и бизнесварианта использования (в)

Применение этих элементов графической нотации иллюстрирует пример представления диаграмм вариантов использования для системы продажи товаров в супермаркете. Эта модель может быть использована при создании и автоматизации соответствующих информационных систем.

В качестве бизнес-актера данной системы можно рассматривать покупателя супермаркета, а в качестве сотрудника – продавца. При этом покупатель является клиентом сервиса "Оформление заказа на покупку товара", а продавец участвует в реализации соответствующего бизнес-процесса. Как следует из существа выдвигаемых к системе требований, этот сервис выступает в качестве базового бизнес-варианта использования данной системы.

С одной стороны, продажа товаров предполагает согласование условий оплаты с покупателем и заказ товара со склада. Поскольку эта функциональность выполняется всегда, она может быть выделена в самостоятельные бизнес-варианты использования, которые будут связаны с базовым отношением включения.

С другой стороны, продажа товаров может предполагать наличие отдельного информационного объекта — каталога товаров, который в некотором смысле не зависит от реализации сервиса по обслуживанию покупателей. В данном случае, каталог товаров может запрашиваться покупателем у продавца при необходимости выбора товара и уточнения его свойств. Вполне резонно представить сервис "Предоставление каталога товаров" в качестве самостоятельного бизнес-варианта использования.

Дальнейшая детализация данной модели может быть выполнена на основе установления дополнительных отношений , в частности отношения "обобщение-специализация" для уже имеющихся компонентов диаграммы вариантов использования. Так, в рамках рассматриваемой системы продажи товаров может иметь самостоятельное значение и специфические особенности отдельная категория товаров — телевизоры. В этом случае диаграмма дополняется вариантом использования "Оформление заказа на покупку телевизора", который связан с сервисом "Оформление заказа на покупку товара" отношением обобщения.

Полученная в результате диаграмма вариантов использования будет содержать 5 бизнесвариантов использования, одного бизнес-актера и одного сотрудника, между которыми установлены соответствующие отношения включения, расширения и обобщения. Эта диаграмма, изображенная в общих обозначениях нотации языка UML, представлена на

рис. 3.8

Рис. 3.8. Диаграмма вариантов использования для системы продажи товаров по каталогу в общих обозначениях языка UML

Анализируя рассматриваемую систему продажи товаров по каталогу, можно заметить, что она представляет собой концептуальную модель типичной бизнес-системы, особенности которой связаны с получением определенной прибыли от реализации соответствующих бизнес-процессов. При этом роли покупателя и продавца в рассматриваемой системе существенно отличаются. Действительно, покупатель является внешним по отношению к системе субъектом, в то время как продавец является частью бизнес-системы. Реализация рассмотренных вариантов использования не изображается на диаграммах вариантов использования. Для моделирования логических и физических аспектов реализации предназначены другие типы канонических диаграмм, которые будут рассмотрены в следующих лекциях.

 

41. Методы определения требований в программной инженерии: сбор, накопление, спецификации и классификация требований.

Анализ и сбор требований

В современных информационных технологиях процесс ЖЦ, на котором фиксируются требования на разработку системы, является определяющим для задания функций, сроков и стоимости работ, а также показателей качества, которых необходимо достигнуть в процессе разработки. Выдвижение требований проводится путем обсуждения проекта, анализа предметной области и определения подходов к проектированию промежуточных продуктов на этапах ЖЦ.

Требования отражают потребности людей (заказчиков, пользователей, разработчиков), заинтересованных в создании ПС. Заказчик и разработчик совместно проводят обсуждение проблем проекта, сбор требований, их анализ, пересмотр, определение необходимых ограничений и документирование.

Обсуждение проекта системыпроводится в целях выработки первых впечатлений и выводов относительно целесообразности выполнения проекта и прогнозирования реальности его выполнения в заданные сроки и бюджет, которые определяет заказчик.

Современные ПС предоставляют набор услуг для выполнения функций ПрО, которые ориентированны на определенную профессиональную деятельность пользователей (например, веб-сервисы). Лицо, которое заказало проект системы, желает получить от разработчика набор необходимых услуг. К участникам системы относятся операторы, менеджеры разных уровней, бухгалтеры и т.п. Именно они будут обращаться к системе за услугами, получать от нее сообщения, реагировать на них в соответствии со своими профессиональными обязанностями.

Оценить возможность реализации услуг в проекте заказываемой системы в заданный срок и бюджет, могут разработчики системы. Среди них назначается главный аналитик, ответственный за требования к системе и главный программист, ответственный за их реализацию. Они проводят согласование требований и определение области действия проекта на совместных переговорах с заказчиком для уточнения следующих вопросов:

спектра проблем ПрО, при решении которых будут реализованы услуги системы; • функциональное содержание услуг;

операционную среду работы системы.

В обсуждении требований на систему принимают участие:

представители заказчика из нескольких профессиональных групп;

операторы, обслуживающие систему;

аналитики и разработчики будущей системы.

Согласованная область действий по проекту дает возможность оценить требуемые инвестиции в проект, заранее определить возможные риски и способности разработчиков выполнить проект. Итогом обсуждения проекта может быть решение о развертывании реализационных работ на проекте или отказ от него.

Анализ требованийначинается после обсуждения проблематики проекта. При рассмотрении требований среди них могут оказаться

неочевидные, не одинаково важные, которые брались из устаревших источников и документов заказчика;

разные типы, которые соответствуют разным уровням детализации проекта и требующие применения методов управления ими;

постоянно изменяемые, развиваемые и уточняемые;

с уникальными свойствами или значениями;

сложные по форме и содержанию, трудные для согласования их с заказчиком.

Разработчики требований должны обладать определенными знаниями в данной предметной области и уметь провести:

анализ проблем предметной области, потребностей заказчика и пользователей системы, • выявление функций системы, которые должны быть реализованы в проекте, • внесение изменений в отдельные элементы требований.

В требованиях к ПС, кроме проблем системы, фиксируются реальные потребности заказчика, касающиеся функциональных, операционных и сервисных возможностей разрабатываемой системы. Результаты обследования и анализа предметной области фиксируются в документе описания требований и в договоре между заказчиком и исполнителем проекта.

Ошибки по причине нечетких или неоднозначных формулировок требований, которые могут привести к тому, что будет изготовлена система, не удовлетворяющая заказчика. Поэтому на этапах разработки требования должны постоянно уточняться и переутверждаться заказчиком. В отдельных случаях внесенные изменения в требования могут привести к необходимости перепроектировать отдельные части или всю систему в целом. Согласно статистике, доля ошибок в постановке требований и в определении задач системы превышает долю ошибок, допускаемых во время кодирования системы. Это объясняется субъективным характером процесса формулирования требований и отсутствием способов их формализации. В США, например, ежегодно расходуется до $ 82 млрд. на проекты, признанные после реализации не соответствующими требованиям заказчиков.

Существующие стандарты (ГОСТ 34.601-90 и ГОСТ 34.201-89) на разработку требований к системе и документам фиксируют результаты создания программного, технического, организационного и др. видов обеспечения автоматизированных систем на этапах ЖЦ.

Сбор требований.Источниками сведений для формирования требований могут быть:

цели и задачи проекта, которые формулирует заказчик разработчиком будущей системы, должны осмысливаться ими;

коллектив, выполняющий реализацию функций системы, не должен использовать старую систему, переставшую удовлетворять заказчика или персонал.

Изучение и фиксация реализованных функциональных возможностей в действующей системе дает основу для учета имеющегося опыта и формулирования новых требований к ней. При этом необходимо отделить новые требования от требований к старой системе, чтобы не повторить неудачные решения старой системы в новом ее варианте.

Требования к системе формулируются заказчиком в терминах понятий проблемной области с учетом терминологического словаря, ведомственных стандартов, условий среды функционирования будущей системы, а также трудовых и финансовых ресурсов, выделенных на разработку системы.

Методы сбора требований следующие:

интервью с представителями интересов заказчика системы;

наблюдение за работой действующей системы для отделения проблемных свойств, которые обусловлены кадровыми ресурсами;

примеры возможных вариантов выполнения функций, ролей ответственных лиц, запускающих эти варианты или взаимодействующих с системой при ее развертывании и функционировании.

Внешние и внутренние аспекты требований соответствуют характеристикам качества и касаются свойств создаваемого продукта, а именно функциональности системы, ее назначения и выполнения в заданной среде. Конечный пользователь ожидает достижения максимального эффекта от применения выходного продукта и ориентируется на его конечное эксплуатационное качество.

При определении требований, относящихся к внешним и внутренним характеристикам качества, выбираются методы их достижения на процессах ЖЦ. Внутренние характеристики предназначены для достижения необходимых внешних показателей качества и применяются при оценке промежуточных (рабочих) продуктов ПС на процессах ЖЦ.

Разработанные требования представляются в специальном документе неформально, который является основой заключения контракта на разработку системы между заказчиком и разработчиком.

Инженерия требований

Инженерная дисциплина анализа и документирования требований заключается в преобразовании предложенных заказчиком требований к системе в описание требований к ПО, их спецификацию и валидацию. Она базируется на моделях процессов разработки требований, действиях актеров и управлении постепенным преобразованием требований к проектным решениям и спецификациям компонентов с обеспечением их качества.

Модель процесса определения требований - это схема процессов ЖЦ, которые выполняются от начала проекта и до тех пор, пока не будут определены и согласованы требования.

Управление требованиями к ПО заключается в планировании и контроле формирования требований, задании на их основе проектных решений, в преобразовании их в спецификации компонентов системы на других процессах.

Качество и процесс улучшения требований - это процесс проверки характеристик и атрибутов качества (надежность, реактивность и др.), которыми должна обладать система и ПО, методы их достижения на процессах ЖЦ.

Управление требованиями к системе - это руководство процессами формирования требований на всех этапах ЖЦ, которое включаетуправление изменениями требований, отражающих свойства программного продукта, а также восстановление источника требований. Неотъемлемой составляющей процесса управления является трассирование требований, состоящее в отслеживании правильности задания и реализации требований к системе и ПО на этапах ЖЦ и обратный процесс сверки ПС с заданными требованиями.

Основные задачи управления требованиями это:

разработка атрибутов требований,

управление вариантами требований,

управление рисками, возникающими при неточном определении требований, • контроль статуса требований, измерение усилий при формировании требований;

реализация требований на этапах ЖЦ. Разработка и управление требованиями связана с другими областями знаний (рис. 3.2.): проектирование, интеграция, управление качеством, версиями, рисками и др. Кроме того, приведены основные задачи разработки требований: спецификация и утверждение, формирование проектных решений.

 

Рис. 3.2.Разработка, управление требованиями и связь с задачами SWEBOK

Планирование работ на проекте касается вопросов организации интеграции компонентов, управления рисками, версиями системы, на которые влияют заданные требования и их изменения.

Управление рисками состоит в контроле появления и обнаружения неадекватных ситуаций при реализации требований, оценке их влияния на другие процессы и в предупреждении рисковых ситуаций. Управления версиями системы включает формирование конфигурации системы в принятых для системы терминах и обозначениях.








Дата добавления: 2017-06-02; просмотров: 5560;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.122 сек.