Тангенциальная составляющая ускорения 12 страница

Работа, которая затрачивается для преодоления сил притяжения, действующих между молекулами газа, как известно из механики, идет на увеличение потенциальной энергии системы, т. е. или откуда

(постоянная интегрирования принята равной нулю). Знак минус означает, что молеку­лярные силы, создающие внутреннее давление р', являются силами притяжения (см. § 60). Учитывая оба слагаемых, получим, что внутренняя энергия моля реального газа

(63.1)

растет с повышением температуры и увеличением объема.

Если газ расширяется без теплообмена с окружающей средой (адиабатический процесс, т. е. dQ=0) и не совершает внешней работы (расширение газа в вакуум, т. е. dА=0), то на основании первого начала термодинамики (dQ = (U2—U1)+ dA) Получим, что

(63.2)

Следовательно, при адиабатическом расширении без совершения внешней работы внутренняя энергия газа не изменяется.

Равенство (63.2) формально справедливо как для идеального, так и для реального газов, но физический смысл его для обоих случаев совершенно различен. Для идеального газа равенство U1=U2 означает равенство температур (T1=T2), т. е. при ади­абатическом расширении идеального газа в вакуум его температура не изменяется. Для реального газа из равенства (63.2), учитывая, что для моля газа

(63.3)

получаем

Так как V2> V1, то Т1 > Т2, т. е. реальный газ при адиабатическом расширении в вакуум охлаждается. При адиабатическом сжатии в вакуум реальный газ нагревается.

§ 64. Эффект Джоуля — Томсона

Если идеальный газ адиабатически расширяется и совершает при этом работу, то он охлаждается, так как работа в данном случае совершается за счет его внутренней энергии (см. § 55). Подобный процесс, но с реальным газом — адиабатическое рас­ширение реального газа с совершением внешними силами положительной рабо­ты—осуществили английские физики Дж. Джоуль (1818—1889) и У. Томсон (лорд Кельвин, 1824—1907).

Рассмотрим эффект Джоуля — Томсона. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с пористой перегородкой находятся два поршня, кото­рые могут перемешаться без трения. Пусть сначала слева от перегородки газ под поршнем 1 находится под давлением р1, занимает объем V1 при температуре Т1, а справа газ отсутствует (поршень 2 придвинут к перегородке). После прохождения газа через пористую перегородку в правой части газ характеризуется параметрами р2, V2, T2. Давления p1 и p2 поддерживаются постоянными (p1>p2).

Так как расширение газа происходит без теплообмена с окружающей средой (адиабатически), то на основании первого начала термодинамики

(64.1)

Внешняя работа, совершаемая газом, состоит из положительной работы при движении поршня 2 (А22V2) и отрицательной при движении поршня 1 (A1=p1V1), т. е. dA=A2—A1. Подставляя выражения для работ в формулу (64.1), получаем

(64.2)

Таким образом, в опыте Джоуля — Томсона сохраняется (остается неизменной) вели­чина U+pV. Она является функцией состояния и называется энтальпией.

Ради простоты рассмотрим 1 моль газа. Подставляя в формулу (64.2) выражение (63.3) и рассчитанные из уравнения Ван-дер-Ваальса (61.2) значения p1V2и р2V2 (символ «m» опять опускаем) и производя элементарные преобразования, получаем

(64.3)

Из выражения (64.3) следует, что знак разности (T2T1) зависит от того, какая из поправок Ван-дер-Ваальса играет бóльшую роль. Проанализируем данное выражение, сделав допущение, что p2<<p1 и V2>>V1:

1) а »0 не учитываем силы притяжения между молекулами, а учитываем лишь размеры самих молекул. Тогда

т. е. газ в данном случае нагревается;

2) b »0 не учитываем размеров молекул, а учитываем лишь силы притяжения между молекулами. Тогда

т. е. газ в данном случае охлаждается;

3) учитываем обе поправки. Подставив в выражение (64.3) вычисленное из уравне­ния Ван-дер-Ваальса (61.2) значение р1, имеем

(64.4)

т. е. знак разности температур зависит от значений начального объема V1 и начальной температуры Т1.

Изменение температуры реального газа в результате его адиабатического расшире­ния, или, как говорят,адиабатического дросселирования — медленного прохождения газа под действием перепада давления сквозьдроссель (например, пористую перегород­ку), называетсяэффектом Джоуля—Томсона. Эффект Джоуля — Томсона принято называтьположительным, если газ в процессе дросселирования охлаждается (DT<0), иотрицательным, если газ нагревается (DT > 0).

В зависимости от условий дросселирования для одного и того же газа эффект Джоуля — Томсона может быть как положительным, так и отрицательным. Тем­пература, при которой (для данного давления) происходит изменение знака эффекта Джоуля — Томсона, называетсятемпературой инверсии. Ее зависимость от объема получим, приравняв выражение (64.4) нулю:

(64.5)

Кривая, определяемая уравнением (64.5), — кривая инверсии — приведена на рис. 94. Область выше этой кривой соответствует отрицательному эффекту Джоуля — Томсона, ниже — положительному. Отметим, что при больших перепадах давления на дросселе температура газа изменяется значительно. Так, при дросселировании от 20 да 0,1 МПа и начальной температуре 17° С воздух охлаждается на 35° С.

Эффект Джоуля — Томсона обусловлен отклонением газа от идеальности. В самом деле, для моля идеального газа рVm=RТ, поэтому выражение (64.2) примет вид

откуда следует, что Т1 = T2.

§ 65. Сжижение газов

Превращение любого газа в жидкость — сжижение газа — возможно лишь при тем­пературе ниже критической (см. § 62). При ранних попытках сжижения газов оказалось, что некоторые газы (Cl, СО2, NH3) легко сжижались изотермическим сжатием, а целый ряд газов (O2, N2, H2, He) сжижению не поддавался. Подобные неудачные попытки объяснил Д. И. Менделеев, показавший, что сжижение этих газов производилось при температуре, большей критической, и поэтому заранее было обречено на неудачу. Впоследствии удалось получить жидкий кислород, азот и водород (их критические температуры равны соответственно 154,4, 126,1 и 33 К), а в 1908 г. нидерландский физик Г. Камерлинг-Оннес (1853—1926) добился сжижения гелия, имеющего самую низкую критическую температуру (5,3 К).

Для сжижения газов чаще применяются два промышленных метода, в основе которых используется либо эффект Джоуля—Томсона, либо охлаждение газа при совершении им работы.

Схема одной из установок, в которой используется эффект Джоуля—Томсо­на, —машины Линде* — представлена на рис. 95. Воздух в компрессоре (К) сжима­ется до давления в десятки мегапаскаль и охлаждается в холодильнике (X) до тем­пературы ниже температуры инверсии, в результате чего при дальнейшем расширении газа наблюдается положительный эффект Джоуля — Томсона (охлаждение газа при его расширении). Затем сжатый воздух проходит по внутренней трубе теплообменника (ТО) и пропускается через дроссель (Др), при этом он сильно расширяется и охлаждает­ся. Расширившийся воздух вновь засасывается по внешней трубе теплообменника, охлаждая вторую порцию сжатого воздуха, текущего по внутренней трубе. Так как каждая следующая порция воздуха предварительно охлаждается, а затем пропускается через дроссель, то температура понижается все больше. В результате 6—8-часового цикла часть воздуха (»5%), охлаждаясь до температуры ниже критической, сжижается и поступает в дьюаровский сосуд (ДС) (см. § 49), а остальная его часть возвращается в теплообменник.

* К. Линде (1842—1934) — немецкий физик и инженер.

Второй метод сжижения газов основан на охлаждении газа при совершении им работы. Сжатый газ, поступая в поршневую машину (детадер), расширяется и совер­шает при этом работу по передвижению поршня. Taк как работа совершается за счет внутренней энергии газа, то его температура при этом понижается.

Академик П. Л. Капица предложил вместо детандера применять турбодетандер, в котором газ, сжатый всего лишь до 500—600 кПа, охлаждается, совершая работу по вращению турбины. Этот метод успешно применен Капицей для сжижения гелия, предварительное охлаждение которого производилось жидким азотом. Современные мощные холодильные установки работают по принципу турбодетандера.

§ 66. Свойства жидкостей. Поверхностное натяжение

Жидкость является агрегатным состоянием вещества, промежуточным между газооб­разным и твердым, поэтому она обладает свойствами какгазообразных, так и твердых веществ. Жидкости, подобно твердым телам, обладают определенным объемом, а по­добно газам, принимают форму сосуда, в котором они находятся (см. § 28). Молекулы газа практически не связаны между собой силами межмолекулярного взаимодействия, и в данном случае средняя энергия теплового движения молекул газа гораздо больше средней потенциальной энергии, обусловленной силами притяжения между ними (см. § 60), поэтому молекулы газа разлетаются в разные стороны и газ занимает предоставленный ему объем. В твердых и жидких телах силы притяжения между молекулами уже существенны и удерживают молекулы на определенном расстоянии друг от друга. В этом случае средняя энергия хаотического (теплового) движения молекул меньше средней потенциальной энергии, обусловленной силами межмолекулярного взаимодей­ствия, и ее недостаточно для преодоления сил притяжения между молекулами, поэтому твердые тела и жидкости имеют определенный объем.

Рентгеноструктурный анализ жидкостей показал, что характер расположения ча­стиц жидкости промежуточен между газом и твердым телом. В газах молекулы движутся хаотично, поэтому нет никакой закономерности в их взаимном расположе­нии. Для твердых тел наблюдается так называемый дальний порядок в расположении частиц, т. е. их упорядоченное расположение, повторяющееся на больших расстояниях. В жидкостях имеет место так называемый ближний порядок в расположении частиц, т. е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.

Теория жидкости до настоящего времени полностью не развита. Разработка ряда проблем в исследовании сложных свойств жидкости принадлежит Я. И. Френкелю (1894—1952). Тепловое движение в жидкости он объяснял тем, что каждая молекула в течение некоторого времени колеблется около определенного положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоя­нии порядка межатомного. Таким образом, молекулы жидкости довольно медленно перемещаются по всей массе жидкости и диффузия происходит гораздо медленнее, чем в газах. С повышением температуры жидкости частота колебательного движения резко увеличивается, возрастает подвижность молекул, что, в свою очередь, является причи­ной уменьшения вязкости жидкости.

На каждую молекулу жидкости со стороны окружающих молекул действуют силы притяжения, быстро убывающие с расстоянием (см. рис. 88); следовательно, начиная с некоторого минимального расстояния силами притяжения между молекулами можно пренебречь. Это расстояние (порядка 10–9 м) называется радиусом молекулярного действияr, а сфера радиуса rсферой молекулярного действия.

Выделим внутри жидкости какую-либо молекулу А (рис. 96) и проведем вокруг нее сферу радиуса r. Достаточно, согласно определению, учесть действие на данную молекулу только тех молекул, которые находятся внутри сферы молекулярного дейст­вия. Силы, с которыми эти молекулы действуют на молекулу А, направлены в разные стороны и в среднем скомпенсированы, поэтому результирующая сила, действующая на молекулу внутри жидкости со стороны других молекул, равна нулю. Иначе обстоит дело, если молекула, например молекула В, расположена от поверхности на расстоя­нии, меньшем r. В данном случае сфера молекулярного действия лишь частично расположена внутри жидкости. Так как концентрация молекул в расположенном над жидкостью газе мала по сравнению с их концентрацией в жидкости, то равнодейст­вующая сил F, приложенных к каждой молекуле поверхностного слоя, не равна нулю и направлена внутрь жидкости. Таким образом, результирующие силы всех молекул поверхностного слоя оказывают на жидкость давление, называемоемолекулярным(иливнутренним). Молекулярное давление не действует на тело, помещенное в жид­кость, так как оно обусловлено силами, действующими только между молекулами самой жидкости.

Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр­ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност­ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверх­ностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверх­ностном слое жидкости, называемая поверхностной энергией, пропорциональна площа­ди слоя DS:

(66.1)

где s — поверхностное натяжение.

Так как равновесное состояние характеризуется минимумом потенциальной энер­гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю­дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготе­ния. В условиях невесомости капля любой жидкости (независимо от ее размеров) имеет сферическую форму, что доказано экспериментально на космических кораблях.

Итак, условием устойчивого равновесия жидкости является минимум поверхност­ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень­шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну­той упругой пленке, в которой действуют силы натяжения.

Рассмотрим поверхность жидкости (рис. 97), ограниченную замкнутым контуром. Под действием сил поверхностного натяжения (направлены по касательной к поверх­ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положе­ние, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу

где f — сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Из рис. 97 видно, что DlDx = DS, т. е.

(66.2)

Эта работа совершается за счет уменьшения поверхностной энергии, т. е.

(66.3)

Из сравнения выражений (66.1) — (66.3) видно, что

(66.4)

т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения — ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10–2—10–1 Н/м. Поверхностное натяжение с повышением тем­пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными. Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 •10–2 до 4,5 • 10–2 Н/м). Поверхностно-активными веществами, пони­жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде. В мыловаренной технике мыло «высаливается» этим способом из раствора.

§ 67. Смачивание

Из практики известно, что капля воды растекается на стекле и принимает форму, изображенную на рис. 98, в то время как ртуть на той же поверхности превращается в несколько сплюснутую каплю (рис. 99). В первом случае говорят, что жидкость смачивает твердую поверхность, во втором — не смачивает ее. Смачивание зависит от характера сил, действующих между молекулами поверхностных слоев соприкасающих­ся сред. Для смачивающей жидкости силы притяжения между молекулами жидкости и твердого тела больше, чем между молекулами самой жидкости, и жидкость стремит­ся увеличить поверхность соприкосновения с твердым телом. Для несмачивающей жидкости силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами жидкости, и жидкость стремится уменьшить поверхность своего соприкосновения с твердым телом.

К линии соприкосновения трех сред (точка О есть ее пересечение с плоскостью чертежа) приложены три силы поверхностного натяжения, которые направлены по касательной внутрь поверхности соприкосновения соответствующих двух сред (рис. 98 и 99). Эти силы, отнесенные к единице длины линии соприкосновения, равны соответст­вующим поверхностным натяжениям s12, s13, s23. Угол q между касательными к поверх­ности жидкости и твердого тела называется краевым углом. Условием равновесия капли (рис. 98) является равенство нулю суммы проекций сил поверхностного натяжения на направление касательной к поверхности твердого тела, т. е.

откуда

(67.1)

Из условия (67.1) вытекает, что краевой угол может быть острым или тупым в зависимости от значений s13 и s12. Если s13 > s12, то cosq > 0 и угол q—острый (рис. 98), т. е. жидкость смачивает твердую поверхность. Если s13 < s12, то cosq < 0 и угол q — тупой (рис. 99), т. е. жидкость не смачивает твердую поверхность. Краевой угол удовлетворяет условию (67.1), если

(67.2)

Если условие (67.2) не выполняется, то капля жидкости 2 ни при каких значениях q не может находиться в равновесии. Если s13 > s12 + s23, то жидкость растекается по поверх­ности твердого тела, покрывая его тонкой пленкой (например, керосин на поверхности стекла), —имеет место полное смачивание (в данном случае q = 0). Если s12 > s13 + s23, то жидкость стягивается в шаровую каплю, в пределе имея с ней лишь одну точку соприкосновения (например, капля воды на поверхности парафина), — имеет место полное несмачивание (в данном случае q = p).

Смачивание и несмачивание являются понятиями относительными, т. е. жидкость, смачивающая одну твердую поверхность, не смачивает другую. Например, вода смачи­вает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает чистые поверхности металлов.

Явления смачивания и несмачивания имеют большое значение в технике. Напри­мер, в методе флотационного обогащения руды (отделение руды от пустой породы) ее, мелко раздробленную, взбалтывают в жидкости, смачивающей пустую породу и не смачивающей руду. Через эту смесь продувается воздух, а затем она отстаивается. При этом смоченные жидкостью частицы породы опускаются на дно, а крупинки минералов «прилипают» к пузырькам воздуха и всплывают на поверхность жидкости. При механической обработке металлов их смачивают специальными жидкостями, что облегчает и ускоряет обработку.

§ 68. Давление под искривленной поверхностью жидкости

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхност­ного натяжения, для выпуклой поверхности положительно, а для вогнутой поверх­ности — отрицательно.

Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса r=Rsina (рис. 100). На каждый бес­конечно малый элемент длины Dl этого контура действует сила поверхностного натяжения DF = s Dl, касательная к поверхности сферы. Разложив DF на два компонента (DF1 и DF2), видим, что геометрическая сумма сил DF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, дей­ствующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих DF1:

Разделив эту силу на площадь основания сегмента pr2, вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривиз­ной поверхности:

(68.1)

Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна

(68.2)

Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Dp.

Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа,* опре­деляющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

(68.3)

где R1 и R2 радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в дайной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

*П. Лаплас (1749—1827) — французский ученый.

 

Для сферической искривленной поверхности (R1=R2=R) выражение (68.3) перехо­дит в (68.1), для цилиндрической (R1=R и R2=¥) — избыточное давление

В случае плоской поверхности (R1=R2=¥) силы поверхностного натяжения избыточного давления не создают.

§ 69. Капиллярные явления

Если поместить узкую трубку(капилляр) одним концом в жидкость, налитую в широ­кий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости —мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).

Под вогнутой поверхностью жидкости появится отрицательное избыточное давле­ние, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, таккак под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) rgh уравновеши­вается избыточным давлением Dp, т. е.

где r — плотность жидкости, g — ускорение свободного падения.

Если r — радиус капилляра, q — краевой угол, то из рис. 101 следует, что (2s cosq)/r = rgh, откуда

(69.1)

В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая—опускается, из формулы (69.1) при q<p/2 (cosq>0) получим положительные значения h, а при q>p/2 (cosq<0) — отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (q=0) вода (r =1000 кг/м3, s = 0,073 Н/м) в ка­пилляре диаметром 10мкм поднимается на высоту h »3 м.

Капиллярные явления играют большую роль в природа и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.

§ 70. Твердые тела. Моно- и поликристаллы

Твердые тела (кристаллы) характеризуются наличием значительных сил межмолекулярного взаимодействия и сохраняют постоянными не только свой объем, но и форму. Кристаллы имеют правильную геометрическую форму, которая, как показали рент­генографические исследования немецкого физика-теоретика М. Лауэ (1879—1960), яв­ляется результатом упорядоченного расположения частиц (атомов, молекул, ионов), составляющих кристалл. Структура, для которой характерно регулярное расположение частиц с периодической повторяемостью в трех измерениях, называется кристалличес­кой решеткой. Точки, в которых расположены частицы, а точнее — средние равновес­ные положения, около которых частицы совершают колебания, называются узлами кристаллической решетки.








Дата добавления: 2017-04-20; просмотров: 377;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.036 сек.