Данные по метаболическим профилям некоторых промышленных микроорганизмов.
Культивирование микроорганизмов и клеток различных тканей связано с особенностями ассимиляции, диссимиляции, роста и размножения представителей трех царств живой природы: животных, растений и микроорганизмов. Культуры представителей указанных семейств различны по форме и содержанию. При решении ряда вопросов биотехнологии ветеринарных препаратов обычно имеют дело с культурами микроорганизмов (бактерий, грибов, вирусов), а также с культурами тканевых клеток, полученных из органов или тканей животных или человека. Вce живые организмы на нашей планете образуют разные соединения первичного метаболизма, такие, как углеводы, белки, липиды, витамины и другие вещества, необходимые для роста и развития. Их содержание и состав зависят от генетических характеристик объектов, стадии онтогенеза и условий произрастания. Помимо первичных метаболитов, у некоторых организмов (преимущественно растений) осуществляется синтез называемых вторичных метаболитов, к которым относятся алкалоиды, терпеноиды, стероиды, фенольные соединения, цианогенные гликозиды и др. Эти низкомолекулярные вещества во многих случаях характерны для отдельных видов растений, а их синтез в значительно шей степени видоспецифичен, чем синтез первичных метаболитов.
Рис. 1. Основные пути синтеза вторичных соединений и их связь с первичным обменом.
В зависимости от продуктов метаболизма выделяется два его вида:
1. Энергетический катаболизм или реакция разрушения. Фактически этот вид метаболизма обеспечивается за счет окислительного дыхания. В процессе дыхания организуется приток в организм элементов-окислителей, окисляющих уже присутствующие в этом организме определенные химические соединения с выделением энергии АТФ. Эта энергия присутствует в клетке в виде фосфатных связей.
2. Конструктивный анаболизм или реакции созидания. Это процесс биосинтеза органических молекул, которые необходимы для поддержания жизни в клетке. Протекает в виде химических реакций, в которые вступают поступающие в клетку вещества и собственные внутриклеточные продукты катаболизма (амфиболиты). Эти реакции обеспечиваются энергией за счет потребления накопленного в АТФ энергетического запаса.
Наличие строгой градации не подразумевает того, что где-то в организме бактериальной клетки отдельно синтезируется энергия, а отдельно строится органическая материя с потреблением уже наработанной энергии.
Подавляющее большинство метаболических процессов протекают в прокариотической клетке одновременно и представляют собой замкнутый цикл. Так, в процессе катаболизма образуются продукты, которые сразу же подхватываются клеточными структурами, и запускается реакция биосинтеза определенных ферментов, которые, в свою очередь, регулируют процессы энергетического синтеза.
По отношению к субстрату метаболизм у бактерий делится на несколько этапов:
1. Периферический – обработка субстрата ферментами, выработанными бактерией.
2. Промежуточный – синтез в клетке промежуточных продуктов.
3. Заключительный – выделение конечных продуктов в окружающую среду.
Энергетический метаболизм у представителей царства бактерий может осуществляться двумя разными биологическими путями:
· хемотрофный (получение энергии в результате протекания химических реакций);
· фототрофный (энергия фотосинтеза).
Хемотрофное дыхание (перенос электрона с субстрата на внутриклеточные вещества) у бактерий происходит тремя способами:
· кислородное окисление (аэробное дыхание);
· бескислородное (анаэробное дыхание);
· брожение.
Использование энергии АТФ для построения клеточного материала является не чем иным, как реакциями биосинтеза по созданию:
· аминокислот;
· нуклеотидов;
· липидов;
· углеводов.
Реакции протекают в несколько этапов. В результате начальных стадий из продуктов разложения глюкозы (пентозофосфаты, пирувата, ацетила КоА и т.д.) образуются белковые молекулы-мономеры, которые на следующих этапах собираются в макромолекулы.
Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине XIX в.
В XX в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии. С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты, изготавливают пиво, вино, ферментированные пищевые продукты.
Дата добавления: 2017-01-13; просмотров: 1112;