ИЗОЛЯТОРЫ ВОЗДУШНЫХ ЛИНИЙ И ПОДСТАНЦИЙ
2.1. Основные характеристики изоляторов
Изоляторами называют электротехнические изделия, предназначенные для изолирования разнопотенциальных частей электроустановки, то есть для предотвращения протекания электрического тока между этими частями электроустановки, и для механического крепления токоведущих частей.
По расположению токоведущей части различают опорные, проходные и подвесные изоляторы, назначение которых прямо определяются их названиями. По конструктивному исполнению изоляторы делятся на тарельчатые (изоляционная часть в форме тарелки), стержневые (изоляционная часть в виде стержня или цилиндра) и штыревые (изолятор имеет металлический штырь, несущий основную механическую нагрузку). По месту установки различают линейные изоляторы, используемые для подвески проводов линий электропередачи и контактной сети, и станционные изоляторы, используемые на электростанциях, подстанциях (в том числе и тяговых) и постах секционирования. В последнем плане одни и те же типы изоляторов, например, подвесные тарельчатые, могут быть и линейными, и станционными.
Основными характеристиками изоляторов являются разрядные напряжения, геометрические параметры и механические характеристики, а также номинальное напряжение электроустановки, для которой предназначен изолятор.
К разрядным напряжениям изоляторов относят три напряжения перекрытия и одно пробивное напряжение:
сухоразрядное напряжение Uсхр - напряжение перекрытия чистого сухого изолятора при напряжении частотой 50 Гц (эффективное значение напряжения);
мокроразрядное напряжение Uмкр - напряжение перекрытия чистого изолятора, смоченного дождем, падающим под углом 45о к вертикали, при напряжении частотой 50 Гц (эффективное значение напряжения);
импульсное разрядное напряжение Uимп - пятидесятипроцентное напряжение перекрытия стандартными грозовыми импульсами (амплитуда импульса, при которой из десяти поданных на изолятор импульсов пять завершаются перекрытием, а оставшиеся пять не приводят к перекрытию);
пробивное напряжение Uпр - напряжение пробоя изоляционного тела изолятора на частоте 50 Гц, редко используемая характеристика, поскольку при пробой вызывает необратимый дефект изолятора и напряжение перекрытия должно быть меньше пробивного напряжения.
У подвесных тарельчатых изоляторов сухоразрядное напряжение в 1,8..2 раза больше мокроразрядного напряжения, у стержневых изоляторов различие меньше, порядка 15..20%. Импульсное разрядное напряжение практически не зависит от увлажнения и загрязнения изолятора и обычно примерно на 20% больше амплитуды сухоразрядного напряжения. Загрязнения на поверхности изолятора сильно снижают мокроразрядное напряжение изолятора.
К геометрическим параметрам относят следующие:
строительная высота Hc, то есть габарит, который изолятор занимает в конструкции после его установки; у некоторых изоляторов, например, у тарельчатых подвесных, строительная высота меньше реальной высоты изолятора; наибольший диаметр D изолятора; длина пути утечки по поверхности изолятора lу кратчайшее расстояние между электродами по воздуху lс (сухоразрядное расстояние), от которого зависит сухоразрядное напряжение; мокроразрядное расстояние lм, определяемое в предположении, что часть поверхности изолятора стала проводящей из-за смачивания дождем, падающим под углом 45о к вертикали.
Длина пути утечки изолятора нормируется ГОСТ 9920-75 для различных категорий исполнения и в зависимости от степени загрязненности атмосферы (табл. 2.1).
В табл. 2.2 приведена характеристика степени загрязненности атмосферы по <Правилам устройства и технической эксплуатации контактной сети>.
Таблица 2.1 Нормированные эффективные длины пути утечки внешней изоляции электрооборудования
Категория исполнения изоляции | Степень загрязненности атмосферы | Удельная эффективная длина пути утечки, см/кВ, не менее, при номинальном напряжении Uном, кВ | |
6-35 | 110-750 | ||
А | 1,2,3 | 1.7 | 1.5 |
Б | 3,4,5 | 2.6 | 2.25 |
В | 5,6 | 3.5 | 3.1 |
Таблица 2.2 Характеристика участков железных дорог по степени загрязненности атмосферы
Степень загрязненности атмосферы | Характеристика железнодорожных участков |
III | Участки железных дорог со скоростями движения до 120 км/ч при отсутствии характеристик, указанных для IV VII СЗА |
IV | Вблизи (до 500 м) мест добычи, постоянной погрузки и выгрузки угля; производства цинка, алюминия; ТЭС, работающих на сланцах и углях с зольностью свыше 30 %. С перевозками в открытом виде угля, сланца, песка, щебня организован-ными маршрутами. Со скоростями движения поездов 120-160 км/ч. Проходящие по местности с сильнозасоленными и дефлирующими поч-вами или вблизи (до 1 км) морей и соляных озер со среднезасоленной водой (10-20 г/л) или далее 1 км (до 5 км) с сильнозасоленной водой (20-40 г/л). |
V | Вблизи (до 500 м) мест производства, постоянной погрузки и выгрузки цемента. Со скоростями движения поездов более 160 км/ч. Проходящие по местности с очень засоленными и дефлирующими поч-вами или вблизи (до 1 км) морей и соленых озер с сильнозасоленной водой (20-40 г/л). В тоннелях со смешанной ездой на тепловозах и электровозах. |
VI | Вблизи (до 500 м) мест расположения предприятий нефтехимической промышленности, постоянной погрузки, выгрузки ее продукции. Места постоянной стоянки и остановки работающих тепловозов. В промышленных центрах с интенсивным выделением смога. |
VII | Вблизи (до 500 м) мест расположения градирен, предприятий химичес-кой промышленности и по производству редких металлов, постоянной погрузки и выгрузки минеральных удобрений и продуктов химической промышленности. |
Основными механическими характеристиками изоляторов являются три следующие характеристики:
- минимальная разрушающая сила на растяжение, имеющая преимущественное значение для подвесных изоляторов;
- минимальная разрушающая сила на изгиб, имеющая преимущественное значение для опорных и проходных изоляторов;
- минимальная разрушающая сила на сжатие, которая для большинства изоляторов имеет второстепенное значение.
Измеряют минимальную разрушающую силу в деканьютонах (даН), что почти совпадает с килограммом силы, или в килоньютонах (кН).
Изготавливают изоляторы из электротехнического фарфора, закаленного электротехнического стекла и полимерных материалов (кремнийорганическая резина, стеклопластик, фторопласт).
2.2. Изоляторы воздушных линий электропередачи, контактной сети и тяговых подстанций
Изоляторы воздушных линий электропередачи чаще всего бывают тарельчатые, штыревые и стержневые. Эти изоляторы спроектированы так, чтобы в сухом состоянии пробивное напряжение превышало пробивное напряжение перекрытия примерно в 1.6 раза, что обеспечивает отсутствие пробоя при перенапряжениях. Одна из возможных конструкций тарельчатого изолятора показана на рис. 2.1.
Для повышения надежности изоляции и повышения разрядных напряжений тарельчатые изоляторы соединяют в гирлянды. Узел крепления у тарельчатых изоляторов выполнен шарнирным, поэтому на изолятор действует только растягивающая сила.
Рис. 2.1. Эскиз изолятора ПФ-70А
Стержневые изоляторы изготавливают из высокопрочного фарфора и из полимерных материалов (рис. 2.2).
Рис. 2.2. Стержневой фарфоровый и стержневой полимерный изоляторы
Механическая прочность фарфоровых стержневых изоляторов меньше, чем у тарельчатых, поскольку фарфор в стержневых изоляторах работает на растяжение, а иногда и на изгиб, а в тарельчатых - на сжатие внутри чугунной шапки изолятора.
Несущей конструкцией полимерного изолятора обычно является стеклопластиковый стержень, имеющий слабую дугостойкость. Этот стержень закрывают ребристым чехлом из кремнийорганической резины или фторопласта, которые обладают отталкивающими свойствами к влаге и загрязнениям.
Штыревые изоляторы крепятся на опоре с помощью металлического штыря или крюка (рис. 2.3). Из-за большого изгибающего усилия на такой изолятор применяют штыревые изоляторы на напряжения не выше 35 кВ.
Рис. 2.3. Изолятор ШФ-10В
На контактной сети электрифицированной железной дороги используется большое количество разновидностей изоляторов. По месту установки изолятора и по конструкции можно выделить шесть подгрупп изоляторов: подвесные изоляторы, которых больше всего;
фиксаторные изоляторы, используемые для изоляции фиксаторных узлов;
консольные изоляторы, которые используют в изолированных консолях и которые могут быть тех же марок, что и фиксаторные; секционирующие изоляторы - особый вид изоляторов, используемых в конструкциях секционных изоляторов (секционные изоляторы, собственно, изоляторами уже не являются, это сборные конструкции для секционирования контактной сети); штыревые изоляторы, используемые для крепления проводов линий продольного электроснабжения, располагаемых на опорах контактной сети;
опорные изоляторы, используемые в мачтовых разъединителях.
В качестве станционных изоляторов используются опорные изоляторы, в основном стержневого типа, проходные изоляторы разных типов и подвесные изоляторы (гирлянды тарельчатых изоляторов).
В табл. 2.2 приведены характеристики нескольких распространенных видов изоляторов.
Таблица 2.2 Основные характеристики некоторых типов изоляторов
Тип | Hc, мм | D, мм | lут, мм | Uсхр, кВ | Uмкр, кВ | Разрушающая сила, кН | ||
растяж. | сжатие | изгиб | ||||||
Стержневые фарфоровые | ||||||||
VKL-60/7 | - | - | ||||||
ИКСУ-27.5 | - | - | 5.2 | |||||
Штыревые фарфоровые | ||||||||
ШФ-10А | - | - | ||||||
ШФ-10Г | - | - | 12.5 | |||||
Штыревые стеклянные | ||||||||
ШС-10А | - | - | ||||||
Полимерные ребристые из кремнийорганической резины | ||||||||
НСК-120/27.5 | - | - | ||||||
ФСК-70/0.9 | - | |||||||
ОСК-70/0.9 | ||||||||
Стеклопластиковый стержень, покрытый фторопластовой защитной трубкой | ||||||||
НСФт-120/1.2 | - | - | - | |||||
Тарельчатые фарфоровые | ||||||||
ПФ-70А | - | - | ||||||
ПФГ-60Б | - | - | ||||||
Тарельчатые стеклянные | ||||||||
ПС-70Д | - | - | - |
2.3. Распределение напряжения вдоль гирлянды изоляторов
Гирлянда изоляторов, составленная из подвесных тарельчатых изоляторов, является одной из наиболее часто встречающихся видов изоляции проводов воздушных линий и контактной сети.
Напряжение, приложенное к гирлянде изоляторов, распределяется неравномерно, и на разные изоляторы приходятся разные доли напряжений, что снижает напряжение начала короны и напряжение перекрытия гирлянды.
В наиболее неблагоприятной ситуации оказывается изолятор, ближайший к проводу.
Основной причиной неодинаковых напряжений на изоляторах можно считать наличие паразитных емкостей металлических частей изоляторов по отношению к земле (рис. 2.4). В гирлянде можно различить три вида емкостей: собственные емкости изоляторов C0 , емкости металлических частей по отношению к земле C1 и емкости по отношению к проводу C2
Порядок величин емкостей примерно таков: C0≈50 пФ, C1 ≈5 пФ, C2≈0.5 пФ.
Рис. 2.4. Гирлянда изоляторов и схема замещения гирлянды
В первом приближении емкостью изоляторов по отношению к проводу можно пренебречь, и тогда схема замещения гирлянды сухих изоляторов выглядит как на рис. 2.4,б. При переменном напряжении по емкостным элементам протекает емкостный ток, и ток первого снизу изолятора разветвляется на ток емкостного элемента по отношению к земле и ток оставшейся части гирлянды.
Через второй снизу изолятор течет емкостный ток меньшей величины, и падение напряжения максимально на нижнем, ближайшем к проводу изоляторе, который находится в наихудших условиях.
При числе изоляторов больше трех-четырех минимальное напряжение приходится, однако, не на самый верхний изолятор. Наличие емкостей C2 приводит к некоторому выравниванию неравномерности падений напряжения и минимальное напряжение оказывается на втором-третьем (или далее, в зависимости от числа изоляторов в гирлянде) изоляторе сверху рис. 2.5.
Рис. 2.5. Доля напряжения на изоляторах в гирлянде из 22 изоляторов
Для выравнивания напряжения по изоляторам гирлянды применяют экраны в виде тороидов, овалов, восьмерок, закрепляемых снизу гирлянды; на линиях с расщепленными фазами утапливают ближайшие изоляторы между проводами расщепленной фазы; расщепляют гирлянду около провода на две. Все эти меры выравнивают распределение напряжения из-за увеличения емкости C2.
РЕЗЮМЕ
Среди изоляторов по расположению токоведущей части различают опорные, проходные и подвесные изоляторы, по конструктивному исполнению различают тарельчатые, стержневые и штыревые изоляторы, а по месту установки различают линейные и станционные изоляторы.
К основным характеристикам изоляторов относят номинальное напряжение, разрядные напряжения, геометрические параметры и механические характеристики.
На контактной сети используются подвесные изоляторы, фиксаторные изоляторы, консольные изоляторы, секционирующие изоляторы, штыревые изоляторы и опорные изоляторы.
Напряжение, приложенное к гирлянде изоляторов, распределяется неравномерно, и наибольшее напряжение оказывается на изоляторе, ближайшем к проводу.
Контрольные вопросы
1. Приведите классификации изоляторов.
2. Назовите основные группы параметров изоляторов и отдельные их
характеристики.
3. Опишите конструктивные особенности отдельных изоляторов контактной сети и тяговых подстанций.
4. В чем причина неравномерного распределения напряжения по гирлянде изоляторов?
Дата добавления: 2016-11-02; просмотров: 7234;