ЩЕЛОЧНЫЕ И ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ МЕТАЛЛЫ
Щелочные и щелочноземельные металлы и их соли (Na, К, Mg, Ca, Sr, Li, Ba). Соли щелочных и щелочноземельных металлов присутствуют в сточных водах машиностроительной, целлюлозно-бумажной, химической, азотнотуковой, электротехнической, красильной, полиграфической и резиновой промышленностей. Поступление калия происходит в результате вымывания из почв калийных удобрений, а также с атмосферной пылью.
Токсичность. Попадая в водоемы, соли щелочных и щелочноземельных металлов повышают соленость и жесткость воды. Их катионы сравнительно легко проникают через жабры в тело рыб и включаются в биохимические процессы, нарушая их течение.
Гипертонические растворы солей, особенно несбалансированные, действуют на пресноводных рыб как настоящие яды. Пороговые концентрации хлоридов составляют для карпа и линя 5,0 г/л, окуня — 10,7 г/л, угря и форели — 11,25 г/л. Для большинства пресноводных рыб безвредной границей солености считают 1,0 г/л (1%о). Щелочные и щелочно-земельные металлы относятся к группе слаботоксичных веществ.
Симптомы и патоморфологические изменения. В высоких концентрациях соли натрия и других элементов обладают локальным действием. Кожа и жабры рыб обильно покрываются слизью. При отравлении солями натрия кожа становится темной, а калия — более светлой. В жабрах наблюдается сморщивание и распад эпителия. При снижении концентрации соли действуют на нервную систему, вызывая паралич нервно-мышечного аппарата. Отравившиеся рыбы плавают кругообразно, а затем толчкообразно, слабо реагируют на раздражения, опрокидываются на бок и гибнут с явлениями паралича. Смерть наступает от асфиксии. При воздействии нитритов кровь становится темно-шоколадного цвета, сохраняющегося несколько часов после смерти.
Диагнозоснован на анализе характера течения интоксикации, определении степени загрязнения водоема и выявления источников поступления сточных вод, содержащих соединения металлов.
По результатам определения жесткости воды и содержания хлоридов, сульфатов, нитратов судят о степени солености воды. Для определения концентрации металлов применяют специальные колориметрические и спектрографические методы.
Профилактика заключается в соблюдении установленных для рыбоводства гидрохимических нормативов. Допустимые пределы их составляют: жесткость — более 7 мг-экв/л, сульфат-ионы — 100 мг/л, хлорид-ионы — 300 мг/л, нитрат-ионы — 40 мг/л (9,1 мг/л N), нитрит-ионы — 0,08 мг/л (0,02 мг/л N), катионы Na — 120 мг/л, Са — 180 мг/л, К — 50 мг/л, Mg — 40 мг/л.
ТЯЖЕЛЫЕ МЕТАЛЛЫ
Тяжелые металлы и их соли (Сu, Zn, Hg, Cd, Pb, Sn, Fe, Mn, Ag, Cr, Co, Ni, As, Al)— широко распространенные промышленные загрязнители. В водоемы они поступают из естественных источников (горных пород, поверхностных слоев почвы и подземных вод), со сточными водами многих промышленных предприятий и атмосферными осадками, которые загрязняются дымовыми выбросами. Тяжелые металлы как микроэлементы постоянно встречаются в естественных водоемах и органах гидробионтов.
Тяжелые металлы довольно устойчивы. Поступая в водоемы, они включаются в круговорот веществ и подвергаются различным превращениям. Неорганические соединения быстро связываются буферной системой воды и переходят в слаборастворимые гидроокиси, карбонаты, сульфиды и фосфаты, а также образуют металлорганические комплексы, адсорбируются донными осадками.
Металлы способны накапливаться в различных организмах и передаваться в возрастающих количествах по трофической цепи. Особенно опасны ртуть, цинк, свинец, кадмий, мышьяк, так как они, поступая с пищей в организм человека и высших животных, могут вызвать отравления.
Большая часть неорганических соединений металлов поступает в организм рыб с пищей. Через жабры и кожу проникают растворимые соли и металлорганические соединения. Антропогенные источники многократно (в 2-13 раз) повышают концентрацию тяжелых металлов в воде.
Токсическое действие большинства тяжелых металлов на рыб обусловлено их ионами. Концентрированные растворы их солей, обладая вяжуще-прижигающим действием, нарушают функции органов дыхания. Гидроокиси железа и марганца, осаждаясь на жабрах и икре, нарушают газообмен, что приводит к асфиксии.
С повышенным загрязнением морской воды соединениями титана, железа, кадмия, хрома связывают поражение рыб опухолями и язвенной болезнью, а также деформацию скелета и воспаление плавников.
В клинической симптоматике острых отравлений рыб тяжелыми металлами преобладают нервно-паралитический синдром и нарушение дыхания, которое обусловлено дистрофическими и некробиотическими изменениями в жабрах и коже. При хроническом отравлении симптомы выражены слабо. На первое место выступают деструктивные изменения жаберного аппарата и паренхиматозных органов, анемия и истощение рыб.
Медь (Си) содержится в сточных водах рудообогатительных комбинатов, металлургических, машиностроительных и электротехнических предприятий. Сульфат, карбонат, хлорокись и арсенат меди применяют как альгициды, фунгициды и моллюскоциды. Медь легко образует комплексы с неорганическими и органическими веществами, адсорбируется на взвесях.
Токсичность. В высоких концентрациях соли меди оказывают вяжущее, раздражающее и прижигающее действие, а в низких — инактивируют дыхательные ферменты. Токсичность меди возрастает при снижении жесткости воды, температуры и содержания кислорода. Отмечен синергизм в комбинации меди с цинком и кадмием. Для гидробионтов более токсичны хорошо растворимые в воде хлориды, нитраты и сульфаты меди.
Нарушение эмбрионального развития радужной форели наступает при концентрациях 0,02—0,04 мг Cu/л в мягкой воде и 0,08 мг Cu/л в жесткой воде. Хроническое отравление рыб отмечают при 0,1 от CK50 и выше. При кратковременном действии этих концентраций повышалась восприимчивость радужной форели и чавычи к вибриозу.
Симптомы и патоморфологические изменения. При остром отравлении рыбы возбуждены, очень активны, тело их покрывается коагулированной слизью голубоватого цвета. В жабрах и коже наблюдается гиперемия, дистрофия, некробиоз и разрушение покровного эпителия, в печени и почках — дистрофия и деструкция эритроцитов. При хроническом воздействии сульфата меди количество слизи уменьшено, кожные покровы бледные, шершавые, нарушена целостность плавников, рыбы истощены.
Гистологические изменения характеризуются гиперплазией, вакуольной дистрофией и последующим очаговым слущиванием и некробиозом эпителия жабр, зернисто-жировой дистрофией и некробиозом печеночных клеток и эпителия мочевых канальцев, распадом эритроцитов, дистрофическими и атрофическими изменениями в скелетной мускулатуре, очаговым некрозом в кишечнике.
Диагноз. Ставят на основании клинико-анатомической картины интоксикации и результатов определения меди в воде, рыбе и других объектах.
Для определения меди в воде и органах рыб применяют колориметрические, спектрофотометрические, атомно-адсорбционные, масс-спектроскопические методы.
Профилактика основана на проведении общих предупредительных мероприятий. Рыбохозяйственная ПДК в пресных водоемах 0,001 мг Cu/л, в морских — 0,005 мг Cu/л. Допустимые остаточные количества меди в рыбных продуктах 10 мг Cu/кг продукта.
Цинк (Zn). Соединения цинка поступают в водоемы из предприятий цветной металлургии, машиностроительной, красильной, химико-фармацевтической, целлюлозно-бумажной, деревообрабатывающей и текстильной промышленности. Хлорид цинка применяют в качестве консерванта древесины. В водоемах он присутствует в виде растворимых солей, нерастворимых гидроокисей и в виде адсорбента на взвешенных частицах.
Токсичность. Ядовитые свойства цинка обусловлены в основном ионами, суспензиями гидроокиси и карбонатов. При увеличении жесткости, солености и взвешенных частиц его токсичность снижается, так как в этих случаях растворимость солей цинка уменьшается.
Сульфат цинка вызывает острое отравление (5 дней) карпов в концентрации 10 мг/л. Остротоксичные концентрации ионов цинка составляют для молоди форели 0,4, молоди карпа и колюшки 0,5 мг Zn/л. Хроническое отравление молоди форели наступает через 26 сут в концентрации 0,01 мг Zn/л. Для зоопланктона токсичны 0,08 мг Zn/л и выше.
Симптомы и патоморфологические изменения сходны с теми, которые вызывает медь.
Диагноз ставят на основании клинико-анатомической картины отравления и определения цинка в воде и органах рыб. Цинк в воде обнаруживают колориметрическим методом. Цинк накапливается в слизи, жабрах, почках, скелете и желудочно-кишечном тракте, гораздо меньше — в печени, селезенке и мышцах.
Профилактика основана на общих принципах. Рыбохозяйственная ПДК цинка в пресных водоемах 0,01, в морских — 0,05 мг Zn/л. Допустимые остаточные количества цинка в рыбных продуктах 40 мг/кг продукта.
Ртуть (Hg) содержится в сточных водах химических заводов по производству красок, хлора и каустической соды, фармацевтических препаратов, взрывчатых веществ, приборостроительных и электротехнических предприятий, горнодобывающих и целлюлозно-бумажных комбинатов. В сельском хозяйстве ртутьорганические соединения (гранозан, меркуран, меркургексан) применяют в качестве пестицидов. Хотя ртуть широко распространена в природе, в последнее время отмечено повышенное ее содержание в воде (13,0 — 30,0 мкг/л), но особенно в гидробионтах.
В воде ртуть находится чаще в растворимом и нерастворимом виде, а также в составе комплексных соединений. Под влиянием микроорганизмов неорганическая ртуть превращается в органическую (этилртуть и метилртуть), которая и накапливается в гидробионтах.
Токсичность. Загрязнение водоемов ртутью вызывает отравления водных животных и весьма опасно для человека из-за накопления ее соединений в пищевых гидробионтах. Металлическая ртуть и ее неорганические соли менее токсичны для рыб, чем органические соединения. Высокая токсичность органических препаратов ртути объясняется тем, что органический радикал способствует проникновению их в организм, что приводит к тяжелому отравлению, поражению центральной нервной системы, печени, почек и других органов.
Ртутные препараты обладают гонадотропным и эмбриотоксическим действием. Из неорганических соединений на рыб действуют в основном растворимые соли ртути — хлориды, сульфаты и нитраты. Ртутьсодержащие соединения являются высокотоксичными для рыб и других гидробионтов. Токсичность ртути в мягкой воде выше, чем в жесткой.
Хроническое отравление рыб развивается при длительном воздействии концентраций, составляющих 1/5-1/20 от СК50. При этом в органах рыб и в кормовых организмах накапливается значительное количество ртути, превышающее ее концентрации в воде в сотни и тысячи раз. Поглощение органической ртути происходит в 10 раз быстрее, чем неорганической. Поэтому в гидробионтах она составляет около 90-100% от общего содержания ртути. Наблюдается тенденция к увеличению концентраций ртути с возрастом рыб.
При остром отравлении ртуть концентрируется в основном в жабрах, мускулатуре и почках, а при хроническом — в почках, печени, головном мозге и кишечной стенке.
Острое отравление карпов и форели наступает при наличии в органах 3,5-10,0 мг/кг, а хроническое — при 37,0 мг/кг ртути во внутренних органах и 3,6-6,8 мг/кг в мускулатуре. Период выделения из организма рыб неорганической ртути составляет около 4 месяцев, а органической 8-12 мес.
Симптомы и патоморфологические изменения.При остромотравлении у рыб наблюдается последовательная смена фаз возбуждения и угнетения, усиления и замедления дыхания, нарушение равновесия и координации движений. Рыбы ложатся на бок и гибнут от удушья. Тело погибших рыб покрыто беловатым налетом, отмечают кровоизлияния в уголках рта, жабры гиперемированы. Жаберный эпителий вначале гипертрофирован, а затем подвергается некробиозу, слущивается, что ведет к деструкции лепестков. Внутренние органы кровенаполнены, обнаруживается некробиоз печеночных клеток, некроз клубочков и эпителия почечных канальцев.
Хроническаяинтоксикация сопровождается резкими нарушениями функции нервной системы: толчкообразным движением рыб, судорогами и параличами, а также анемией. При патоморфологическом исследовании отмечают повышенное кровенаполнение органов, очаговые некрозы в печени и почках, отек жабр, дистрофию и распад респираторного эпителия, некробиоз нервных клеток головного мозга.
Диагноз ставят на основе комплексных исследований. Клиническая картина и патологоанатомические изменения указывают на отравление. Обязательным является химический анализ воды, грунта и органов рыб на наличие ртути. Для определения ртути в воде рекомендуется колориметрический метод.
Профилактика. Кроме осуществления общих мероприятий, следует строго контролировать наличие остатков ртути в кормах, грунте водоемов и в основных гидробионтах. Запрещается скармливать рыбам зерно, протравленное ртутьсодержащими пестицидами. ПДК гранозана в пресных рыбохозяйственных водоемах 0,00001 мг/л, сулемы — 0,0001 мг/л, в морских водоемах — 0,001 мг Hg/л. Допустимые количества ртути в рыбных продуктах 0,5 мг/кг с учетом естественного уровня, который составляет в мускулатуре промысловых рыб в среднем 0,12 мг/кг.
Кадмий (Cd). Содержится в сточных водах многих промышленных предприятий, особенно свинцово-цинковых и металлообрабатывающих заводов, использующих гальванопокрытие. Он присутствует в фосфорных удобрениях. В воде растворяются сернокислый, хлористый и азотнокислый кадмий, его гидроокиси нерастворимы.
Токсичность. Наиболее токсичны для рыб и других гидробионтов растворимые соединения кадмия. Средние смертельные концентрации кадмия для лосося, форели и карпа в мягкой воде составляют от 0,05 до 0,24 мг Cd/л (экспозиция 96 ч). Хроническое отравление форели, сопровождающееся накоплением кадмия в жабрах, печени и почках до 3-16 мг/кг, наступает при концентрациях более 0,01 мг/л в течение 10-20 недель. Установлен синергизм кадмия и меди, суммирование действия кадмия и цинка. Токсические границы кадмия для гаммарусов и дафний 0,5 мг/л.
Симптомы и патоморфологические изменения. Кадмий обладает местным раздражающим и резорбтивным действием. При остром отравлении хлористым кадмием обнаруживают гиперплазию и распад респираторного эпителия жабр, эпидермиса кожи, некробиоз кишечника и канальцев почек, гемопоэтической ткани. Хроническая интоксикация выражается замедлением роста, некробиотическими изменениями в жабрах, почках, печени, гемопоэтической ткани, отмечены образование доброкачественной опухоли в почках и деформация позвоночника.
Диагноз. Для определения кадмия в воде применяют колориметрический, и атомно-абсорбционный методы, а в рыбе и рыбных продуктах — атомно-абсорбционную спектроскопию.
Профилактика та же, что при загрязнении другими металлами. Рыбохозяйственная ПДК кадмия в пресных водоемах 0,005 мг/л, в морских — 0,01 мг/л. Допустимые количества в рыбных продуктах 0,1 мг/кг.
Мышьяк (As). Он содержится в сточных водах различных отраслей промышленности — металлургической, химико-фармацевтической, текстильной, стекольной, кожевенной, химической по производству инсектицидов, гербицидов, красок. Мышьяковистые ядохимикаты, используемые в сельском и лесном хозяйстве для борьбы с вредителями растений, могут поступить в водоемы с поверхностным стоком. В воде мышьяк обнаруживается в форме арсената (соль мышьяковой кислоты) или арсенита (соль мышьяковистой кислоты), а также встречаются метиллированные соединения.
Токсичность. В больших концентрациях соединения мышьяка действуют прижигающе на жабры и кожу рыб. Проникая внутрь организма, мышьяк связывается с ферментами и вызывает сосудистые нарушения и деструктивные изменения во внутренних органах. Арсениты проникают в тело рыб быстрее, чем арсенаты, и более токсичны.
Смертельные концентрации мышьяковистого ангидрида для форели и окуня 15-19 мг As/л, карася и карпа — 19-25, дафний — 0,5, циклопов — 1-5 мг As/л. Концентрация мышьяка в воде 1,1-2,2 мг As/л вызывает гибель судака и плотвы через 2-3 сут, 3,1 мг As/л— карпа и угря через 4-6 сут.
При остром отравлении мышьяк концентрируется в жабрах и внутренних органах, а при хроническом, кроме того, в костях, чешуе и головном мозге.
Симптомы и патоморфологические изменения. Мышьяк является медленно действующим ядом, картина острого отравления рыб нехарактерна. Рыбы угнетены, малоподвижны, перед смертью наступает сильное возбуждение и судороги. Прихроническом отравлении наступает истощение и анемия. Патоморфологические изменения характеризуются дистрофией респираторного эпителия, водяночно-жировой дистрофией и некробиозом печеночных клеток и эпителия канальцев почек.
Диагноз ставят по результатам определения мышьяка в воде и рыбе. Для установления мышьяка в воде рекомендуются колориметрический метод, а в органах рыб — качественные методы и количественное определение фотоэлектроколориметрическим методом. Содержание мышьяка в морских рыбах может достигать 5 мг/кг сырой массы. Мышьяк хорошо сохраняется в биологическом материале и может быть обнаружен в трупах через длительное время после смерти.
Профилактика основывается на предотвращении попадания мышьяка в водоемы со сточными водами промышленных и сельскохозяйственных предприятий, а также в соблюдении правил применения его соединений в качестве пестицидов и антипаразитарных средств в ихтиопатологии.
Рыбохозяйственная ПДК мышьяка в пресных водоемах 0,05 мг/л, морских— 0,01 мг/л, допустимые остаточные количества в рыбных продуктах — 1 мг/кг.
Железо (Fe). В поверхностных водах содержание железа колеблется в широких пределах. В подземных водоисточниках и водах болот его концентрация достигает десятков мг/л. Резкое повышение железа в водоемах происходит при загрязнении их сточными водами рудников, металлургических, машиностроительных и химических предприятий.
В воде присутствует закисное (Fe..) и окисное (Fe…) железо. Закисные формы железа нестойки, быстро окисляются, переходя в окисные, а также образуют нерастворимые гидроокиси и карбонаты. В кислой среде растворимость железа увеличивается, а в щелочной уменьшается. В концентрации 0,05 мг/л железо придает воде желтоватую окраску, а в концентрациях 0,3-1,0 мг/л — металлический вкус.
Токсичность железа обусловлена механическим повреждением и асфиксией рыб и икры в результате осаждения хлопьев гидроокиси железа или0
снижением в воде кислорода, потребляемого на окисление закисного железа. В кислой среде ионы железа проникают в ткани и действуют самостоятельно как токсины.
О величине токсических концентраций железа для рыб имеются разноречивые данные. Это связано с тем, что его токсичность во многом зависит от гидрохимического режима, особенно от рН, жесткости и других показателей. Для рыб более токсично сернокислое и двухлористое железо, чем его окись и хлорное железо.
Острое отравление карпа, карася и леща происходит при концентрации хлорида и сульфата железа 4,3—6,4 мг/л. При рН воды 5—6,7 токсические концентрации железа для лосося, форели, щуки, плотвы и карпа снижаются до 1,0-2 мг/л. Гибель икры байкальского окуня отмечена при концентрации железа 0,52 мг/л в результате оседания на ее оболочке окиси железа. Смертельные границы железа для карпов находятся на уровне 15 мг/л и выше. Железные квасцы вызывают гибель карпа и линя в концентрации 340-380 мг/л. При длительном воздействии низких концентраций железа понижается резистентность рыб к сапролегниозу.
Симптомы и патоморфологические изменения. При остром отравлении соединениями железа жабры, кожа рыб, а также оболочка погибшей икры покрываются бурым налетом. В жабрах, кроме того, отмечается распад эпителия.
Диагноз ставят на основании внешнего осмотра рыб и икры, результатов определения содержания железа в воде, отложения его на растительности и дне водоема.
Наиболее распространенный метод определения железа в воде — колориметрический.
Профилактика. Воду, богатую железом, можно использовать для рыбоводных целей после хорошей аэрации и пропускания ее через отстойники. Для рыбоводства в пресных водоемах допустимы концентрации общего железа 1-2 мг/л, закисного — не более 0,2 мг/л, в морских водах — 0,05 мг/л.
Рыбохозяйственная ПДК железа не установлена.
Марганец (Мп). Большое количество марганца и его соединений содержится в сточных водах марганцевых рудников, обогатительных фабрик, металлургических и некоторых химических заводов. В воде марганец присутствует в растворенной форме (сернокислые, хлористые и азотнокислые соли, перманганат калия — КМпО4) и в виде нерастворимых гидроокисей. В концентрации 0,1-0,5 мг/л марганец изменяет органолептические свойства воды, придавая ей металлический вкус.
Токсичность. Соединения марганца менее токсичны для рыб, чем других тяжелых металлов. Токсическое действие марганца сходно с железом. Летальная концентрация перманганата калия при экспозиции 24 ч составляет для окуневых 6 мг/л. Ракообразные (дафнии и циклопы) погибают при концентрации 1 мг/л КМп04.
Токсичны концентрации хлористого марганца (при экспозиции 7 дней): для годовиков карпа — 600 мг/л, для ручьевой форели — 100, для радужной форели — 75 мг/л. Кормовые организмы погибают при 700-1000 мг/л. Гибель икры и рыбы от асфиксии наступает при отложении гидроокиси марганца в виде сплошного слоя.
Симптомы и патоморфологические изменения. Остроеотравление солями марганца характеризуется беспокойством рыб, светлой окраской туловища, уменьшением чувствительности к раздражителям. Кожа и жабры рыб, погибших от отравления перманганатом калия, приобретают буро-коричневую окраску. Гистологическими исследованиями устанавливают дистрофию, некробиоз и слущивание эпителия жаберных лепестков и кожи.
При хроническом отравлении соединения марганца действуют как протоплазматические яды, вызывая тяжелые изменения в нервной системе, почках и органах кровообращения.
Диагноз. Для определения общего содержания всех форм марганца в воде рекомендован колориметрический метод. В биоматериале должен быть обнаружен марганец. Естественное содержание марганца (по сухому веществу) у сазана, судака, леща и плотвы составляет во внутренних органах 5-20 мг/кг, мышцах 3-6 мг/кг и чешуе 300-700 мг/кг сухого вещества.
Профилактика основана на недопущении повышенного загрязнения водоемов марганцем путем эффективной очистки сточных вод, а также строгим соблюдением дозировок при применении перманганата калия в ихтиопатологии. Рыбохозяйственная ПДК марганца не установлена.
Хром (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы.
В воде встречаются трехвалентные катионы хрома в составе его сульфатов, хлоридов и нитратов или шестивалентный хром в виде анионов гидрохромата (НСгО'4) и хромата (СгО"4). В воде растворяются хлориды, нитраты и сульфаты хрома, хроматы и бихроматы натрия, калия, аммония.
Токсичность. Помимо специфического токсического действия ионов хрома, его соединения (хромовая кислота и бихроматы) влияют на рыб косвенно, снижая рН воды. С повышением жесткости воды токсичность хромовых соединений снижается.
Для рыб и других гидробионтов более токсичны соединения трехвалентного хрома, чем шестивалентного. Так, сернокислый хром вызывает гибель колюшки в концентрации 2 мг/л, карася — 4,0 мг/л и окуня — 7,46 мг/л хрома. Смертельные концентрации хромата и бихромата калия: для форели — 50, окуня — 75, карпа и карася — 37,5-52 мг/л.
Хром аккумулируется в жабрах, печени и почках.
Симптомы и патоморфологические изменения. При остром отравлении соединениями хрома рыбы обильно покрываются слизью и погибают от асфиксии. Поражается и эпидермис кожи. Хроническое отравление шестивалентным хромом сопровождается скоплением в брюшной полости оранжево-желтой жидкости.
Диагноз ставят на основании клинико-анатомической картины отравления и определения содержания хрома в воде и органах рыб. Для этого применяют колориметрический метод.
Профилактика. Рыбохозяйственная ПДК хромолана — 0,5 мг/л, калия двухромовокислого — 0,05 мг/л, хромовых квасцов — 0,01 мг/л, хрома (шестивалентного) — 0,001 мг/л. Допустимые остаточные количества хрома в рыбных продуктах — 0,3 мг/кг.
Другие тяжелые металлы (свинец, олово, кобальт, никель, серебро, селен, титан, ванадий, алюминий). Названные металлы содержатся в стоках свинцово-цинковых рудников, предприятий цветной металлургии, машиностроительной, лакокрасочной, алюминиевой, химической промышленности. В воде растворяются в основном их сернокислые, хлористые и азотнокислые соли, а также встречаются металлоорганические соединения. Один из источников загрязнения воды свинцом — выхлопные газы бензиновых двигателей.
Токсичность. Для рыб более токсичны соединения свинца, серебра и алюминия, чем олова, кобальта и никеля.
Токсичность названных металлов в значительной степени зависит от жесткости воды: с повышением жесткости большинство соединений связывается и их токсические концентрации имеют более высокие значения, чем в мягкой воде. Кормовые организмы, как правило, более чувствительны, чем рыбы.
Симптомы и патоморфологические изменения. Картина острого и хронического отравлений наиболее полно изучена при воздействии на рыб свинца. Действие остальных металлов этой группы сходно с действием свинца и других тяжелых металлов.
При остром отравлении названными металлами вначале появляется беспокойство, учащается дыхание, затем развивается общее угнетение и замедляется дыхание. Жабры и кожа покрываются слоем коагулированной слизи, в них обнаруживаются отек тканей, некробиоз и слущивание покровного эпителия, распад клеток кожи. При хроническом отравлении внешние признаки и местная реакция в жабрах и коже выражены слабее, преобладают некробиотические изменения во внутренних органах.
Для действия свинца характерны потемнение хвостового стебля и искривление тела рыб. Параллельно с этим обнаруживаются очаговый некроз паренхимы печени, почек и селезенки, дистрофия мышечных пучков миокарда, разрушение нейронов среднего мозга, резорбция половых клеток. В крови снижается количество гемоглобина, эритроцитов и лимфоцитов, а также происходит распад эритроцитов.
Диагноз ставят так же, как и при прочих отравлениях тяжелыми металлами. При интоксикации свинцом проводят гематологические исследования. Для исследования воды рекомендуют колориметрический и полярографический методы.
Профилактика заключается в предотвращении загрязнения рыбохозяйственных водоемов сточными водами указанными элементами путем совершенствования технологических процессов и методов очистки сточных вод. Рыбохозяйственные ПДК в пресных водоемах: свинца — 0,1 мг/л, никеля — 0,01 мг/л, кобальта — 0,01 мг/л; в морских водоемах: свинца — 0,01 мг/л, кобальта — 0,005 мг/л. Допустимые количества в рыбных продуктах: алюминия — 30,0 мг/кг, никеля — 0,5 мг/кг, олова — 200 мг/кг, свинца — 1,0 мг/кг, селена — 1,0 мг/кг продукта.
Дата добавления: 2016-11-02; просмотров: 2091;