Органоиды и включения

 

Немембранные органоиды:

МИТОХОНДРИИ

(митос – нить; хондр - зерно)

 

Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.

Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры – частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.

В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.

Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).

 

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

 

Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом – агранулярная. Основная функция эндоплазматической сети – накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной – синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.

 

 

КОМПЛЕКС ГОЛЬДЖИ

 

Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.

Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.

 

 

ЛИЗОСОМЫ

 

Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция – расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа – например, инволюции матки после родов). Таким образом, лизосомы – это пищеварительная система клетки.

Различают 4 формы лизосом:

1. Первичные - запасающая гранула.

2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.

3. Аутофагосомы - гидролиз внутриклеточных структур.

4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.

 

Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.

 

ПЕРОКСИСОМЫ

 

Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.

 

Немембранные органоиды:

РИБОСОМЫ

 

Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.

Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо: 1) аминокислоты (их 20); 2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код; 3) транспортная РНК и 4) ряд ферментов.

 

ЦИТОСКЕЛЕТ

 

Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами – нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки, микрофибриллы и промежуточные филаменты. Оказалось, что микротрубочки – это полые цилиндры, состоящие из белка тубулина; микрофибриллы – длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные – из разных белков (в эпителии – кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.

В последнее время ученые обнаружили 4-ый компонент цитоскелета – тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.

Микротрубочки принимают участие в образовании центриолей, представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.

 

При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.

Микротрубочки принимают участие в формировании ресничек и жгутиков. Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.

Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).

 

ВКЛЮЧЕНИЯ

Непостоянные структуры цитоплазмы. Они могут быть липидами, углеводами, белками, витаминами и использоваться клетками как источники энергии и питательных веществ. Могут выделяться из клетки и использоваться организмом (секреторные включения). Включения представляют собой капельки жира, гликогена, ферменты, пигментные включения.

 

ЯДРО

Является обязательным компонентом полноценной клетки. Оно обеспечивает двефункции:

1. Хранение и передачу генетической информации.

2. Реализацию информации с обеспечением синтеза белка.

Наследственная информация хранится в виде неизменных структур ДНК. В ядре происходит воспроизведение или редупликация молекул ДНK (удвоение), что дает возможность двум дочерним клеткам при митозе получить одинаковые объемы генетической информации.

На молекулах ДНК происходит транскрипция разных РНК-информационных, транспортных и рибосомных.

В ядре происходит образование субъедениц рибосом путем соединения рибосомных РНК с рибосомными белками, синтезируемыми в цитоплазме и перенесенными в ядро. Клетки без ядра не способны синтезировать белок (например, эритроциты). Нарушение любой функции ядра приводит к гибели клетки.

Форма ядер в большинстве округлая, но есть палочковидная и сегментированная. В ядре различают ядерную оболочку, кариоплазму (ядерный матрикс), хроматин и ядрышко. Ядерная оболочка – кариолемма состоит из двух липопротеидных мембран, между которыми находится перинуклеарное пространство.

В оболочке имеются ядерные поры (поровый комплекс), диаметром 80-90 нм. В области поры мембраны сливаются. Внутри поры имеется три ряда гранул (белковых глобул) по 8 штук. В центре тоже есть гранула и с каждой из 24 гранул она соединена тонкими нитями (фибриллами), образуя сеточку. Через нее проходят микромолекулы из ядра и в ядро. Число пор может варьировать в зависимости от активности ядра.

На внешней ядерной мембране, обращенной к цитоплазме клетки, размещены полирибосомы, и она может переходить в мембраны эндоплазматической сети.

Внутренняя мембрана имеет связь с плотной пластинкой, которая представляет густую сеть белковых фибрилл, соединяющихся с фибриллами кариоплазмы. Пластинка и фибриллярная система выполняют опорную функцию. Плотная пластинка при помощи специальных белков связана с участками хромосом и обеспечивает порядок их расположения в период интерфазы.

Таким образом, ядерная оболочка является барьером, отделяющим содержимое ядра от цитоплазмы, ограничивая свободный доступ в ядро крупных агрегатов и регулируя транспорт микромолекул между ядром и цитоплазмой, а также фиксирует хромосомы в ядре.

 

Кариоплазма - бесструктурное вещество, содержит различные белки (нуклеопротеиды, гликопротеиды, ферменты и соединения, участвующие в процессе синтеза нуклеиновых кислот, белков и других веществ). Под большим увеличением видны рибонуклепротеидные гранулы. Выявлены продукты белкового обмена, гликолитические ферменты и другие.

 

Хроматин – плотное, хорошо окрашивающееся вещество. Он представлен совокупностью хромосом. Хромосомы постоянно присутствуют, но видны лишь во время митоза, так как сильно спирализуются и утолщаются. В интерфазном ядре они деспирализуются и не видны. Сохранившиеся конденсированные участки называются гетерохроматином, а деконденсированные – эухроматином, в котором идет активная работа по синтезу веществ. Много эухроматин обычно в молодых клетках.

Хроматин состоит из ДНК (30-40 %), белков (60-70 %) и небольшого количества РНК (т.е. дезоксирибонуклеопротеид). Молекула ДНК представляет собой двойную спираль, с различными азотистыми основаниями Белки представлены гистонами и негистонами. Гистоны (основные) выполняют структурную функцию, обеспечивая укладку ДНК. Негистоны образуют матрикс в интерфазном ядре и регулируют синтез нуклеиновых кислот.

 

Ядрышко – тельце округлой формы внутри ядра. Это место образования рибосомных РНК и формирования рибосом. Ядрышковыми организаторами являются участки хромосомы (или ДНК), которые содержат гены, кодирующие синтез рибосомных РНК. Эти участки прилегают к поверхности ядрышка в виде конденсированного хроматина, где синтезируется предшественник РНК. В зоне ядрышка предшественник одевается белком, образуя субъеденицы рибосомы. Выходя в цитоплазму, они заканчивают свое формирование и участвуют в процессе синтеза белка.

В составе ядрышка различают: ядрышковый хроматин, фибриллярные (филаменты РНК) и гранулярные (гранулы РНК-формирующиеся рибосомы) структуры, состоящие из нуклеопротеидов. Фибриллярные и гранулярные компоненты образуют ядрышковую нить (нуклеолонему).

 








Дата добавления: 2016-11-02; просмотров: 3662;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.