Затухание и искажение волн на линиях вследствие активных потерь в проводниках

Ответ:Пусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному. Идеальным в этом случае является так называемаялиния без потерь, у которой сопротивление и проводимость равны нулю.

Действительно, в этом случае , т.е. независимо от частоты коэффициент затухания и фазовая скорость . Однако искажения могут отсутствовать и в линии с потерями. Условие передачи сигналов без искажения вытекает из совместного рассмотрения выражений для постоянной распространения

(1)

и фазовой скорости

. (2)

Из (1) и (2) вытекает, что для получения и , что обеспечивает отсутствие искажений, необходимо, чтобы , т.е. чтобы волновое сопротивление не зависело от частоты.

. (3)

Как показывает анализ (3), при

(4)

есть вещественная константа. Линия, параметры которой удовлетворяют условию (4), называется линией без искажений. Фазовая скорость для такой линии

и затухание .

Следует отметить, что у реальных линий (и воздушных, и кабельных) . Поэтому для придания реальным линиям свойств линий без искажения искусственно увеличивают их индуктивность путем включения через одинаковые интервалы специальных катушек индуктивности, а в случае кабельных линий – также за счет обвивания их жил ферромагнитной лентой. Уравнения линии конечной длины: Постоянные и в полученных в предыдущей лекции формулах

; (5)

 

(6)

определяются на основании граничных условий.

Пусть для линии длиной l (см. рис. 1) заданы напряжение и ток в начале линии, т.е. при .

Тогда из (5) и (6) получаем

откуда

Подставив найденные выражения и в (5) и (6), получим

(7)

 

(8)

Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение и ток в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде

; (9)

 

. (10)

Обозначив и , из уравнений (9) и (10) при получим откуда

После подстановки найденных выражений и в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии

; (11)

 

. (12)

Уравнения длинной линии как четырехполюсника: В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями ; . Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется. Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения. Определение параметров длинной линии из опытов холостого хода и короткого замыкания: Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ). При ХХ и , откуда входное сопротивление

. (13)

При КЗ и . Следовательно,

. (14)

На основании (13) и (14)

(15)

И , откуда

. (16)

Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры и линии, по которым затем могут быть рассчитаны ее первичные параметры и .

Линия без потерь: Линией без потерь называется линия, у которой первичные параметры и равны нулю. В этом случае, как было показано ранее, и . Таким образом, , откуда . Раскроем гиперболические функции от комплексного аргумента : Тогда для линии без потерь, т.е. при , имеют место соотношения: и . Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:

; (17)

 

. (18)

Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18). Стоячие волны в длинных линиях: Как было показано выше, решение уравнений длинной линии можно представить в виде суммы прямой и обратной волн. В результате их наложения в цепях с распределенными параметрами возникают стоячие волны. Рассмотрим два предельных случая: ХХ и КЗ в линии без потерь, когда поглощаемая приемником активная мощность равна нулю. При ХХ на основании уравнений (17) и (18) имеем и , откуда для мгновенных значений напряжения и тока можно записать

; (19)

 

. (20)

Последние уравнения представляют собой уравнения стоячих волн, являющихся результатом наложения прямой и обратной волн с одинаковыми амплитудами.

При ХХ в соответствии с (19) и (20) в точках с координатами , где - целое число, имеют место максимумы напряжения, называемые пучностями, и нули тока, называемые узлами. В точках с координатами пучности и узлы напряжения и тока меняются местами (см. рис. 2). Таким образом, узлы и пучности неподвижны, и пучности одной переменной совпадают с узлами другой и наоборот.

При КЗ на основании уравнений (17) и (18) и , откуда для мгновенных значений можно записать т.е. и в этом случае напряжение и ток представляют собой стоячие волны, причем по сравнению с режимом ХХ пучности и узлы напряжения и тока соответственно меняются местами. Поскольку в узлах мощность тождественно равна нулю, стоячие волны в передаче энергии вдоль линии не участвуют. Ее передают только бегущие волны. Чем сильнее нагрузка отличается от согласованной, тем сильнее выражены обратные и, следовательно, стоячие волны. В рассмотренных предельных случаях ХХ и КЗ имеют место только стоячие волны, и мощность на нагрузке равна нулю.








Дата добавления: 2016-04-23; просмотров: 1316;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.