Примеры типовых звеньев

Звеном системы называется ее элемент, обладающий определенными свойствами в динамическом отношении. Звенья систем регулирования могут иметь разную физическую природу (электрические, пневматические, механические и др. звенья), но описываться одинаковыми ДУ, а соотношение входных и выходных сигналов в звеньях описываться одинаковыми передаточными функциями.

В ТАУ выделяют группу простейших звеньев, которые принято называть типовыми. Статические и динамические характеристики типовых звеньев изучены достаточно полно. Типовые звенья широко используются при определении динамических характеристик объектов управления. Например, зная переходную характеристику, построенную с помощью самопишущего прибора, часто можно определить, к какому типу звеньев относится объект управления, а следовательно, его передаточную функцию, дифференциальное уравнение и т.д., т.е. модель объекта. Типовые звенья Любое сложное звено может быть представлено как соединение простейших звеньев.

К простейшим типовым звеньям относятся:

· усилительное,

· инерционное (апериодическое 1-го порядка),

· интегрирующие (реальное и идеальное),

· дифференцирующие (реальное и идеальное),

· апериодическое 2-го порядка,

· колебательное,

· запаздывающее.

1) Усилительное звено.

Звено усиливает входной сигнал в К раз. Уравнение звена у = К*х, передаточная функция W(s) = К. Параметр К называется коэффициентом усиления.

Выходной сигнал такого звена в точности повторяет входной сигнал, усиленный в К раз (см. рисунок 1.18).

у = K.x.

При ступенчатом воздействии h(t) = K.

Примерами таких звеньев являются: механические передачи, датчики, безынерционные усилители и др.

2) Интегрирующее.

2.1) Идеальное интегрирующее.

Выходная величина идеального интегрирующего звена пропорциональна интегралу входной величины:

; W(s) =

При подаче на вход звена ступенчатого воздействия x(t) = 1 выходной сигнал постоянно возрастает (см. рисунок 1.19):

h(t) = K.t.

Это звено астатическое, т.е. не имеет установившегося режима.

Примером такого звена может служить емкость, наполняемая жидкостью. Входной параметр – расход поступающей жидкости, выходной - уровень. Изначально емкость пуста и при отсутствии расхода уровень равен нулю, но если включить подачу жидкости, уровень начинает равномерно увеличиваться.

2.2) Реальное интегрирующее.

Передаточная функция этого звена имеет вид

W(s) = .

Переходная характеристика в отличие от идеального звена является кривой (см. рис. 1.20):

h(t) = K.(t – T) + K.T.e -t/T.

 

Примером интегрирующего звена является двигатель постоянного тока с независимым возбуждением, если в качестве входного воздействия принять напряжение питания статора, а выходного - угол поворота ротора. Если напряжение на двигатель не подается, то ротор не двигается и угол его поворота можно принять равным нулю. При подаче напряжения ротор начинает раскручиваться, а угол его поворота сначала медленно вследствие инерции, а затем быстрее увеличиваться до достижения определенной скорости вращения.

3) Дифференцирующее.

3.1) Идеальное дифференцирующее.

Выходная величина пропорциональна производной по времени от входной:

; W(s) = K*s

При ступенчатом входном сигнале выходной сигнал представляет собой импульс (d-функцию): h(t) = K.d(t).

3.2) Реальное дифференцирующее.

Идеальные дифференцирующие звенья физически не реализуемы. Большинство объектов, которые представляют собой дифференцирующие звенья, относятся к реальным дифференцирующим звеньям, передаточные функции которых имеют вид

W(s) = .

Переходная характеристика: .

Пример звена: электрогенератор. Входной параметр – угол поворота ротора, выходной – напряжение. Если ротор повернуть на некоторый угол, то на клеммах появится напряжение, но если ротор далее не вращать, напряжение снизится до нуля. Резко упасть оно не может вследствие наличия индуктивности у обмотки.

4) Апериодическое (инерционное).

Этому звену соответствуют ДУ и ПФ вида

; W(s) = .

Определим характер изменения выходной величины этого звена при подаче на вход ступенчатого воздействия величины х0.

Изображение ступенчатого воздействия: X(s) = . Тогда изображение выходной величины:

Y(s) = W(s) X(s) = = K x0 .

Разложим дробь на простые:

= + = = - = -

Оригинал первой дроби по таблице: L-1{ } = 1, второй:

L-1{ } = .

Тогда окончательно получаем

y(t) = K x0 (1 - ).

Постоянная Т называется постоянной времени.

Большинство тепловых объектов являются апериодическими звеньями. Например, при подаче на вход электрической печи напряжения ее температура будет изменяться по аналогичному закону (см. рисунок 1.22).

5) Звенья второго порядка

Звенья имеют ДУ и ПФ вида

,

W(s) = .

При подаче на вход ступенчатого воздействия амплитудой х0 переходная кривая будет иметь один из двух видов: апериодический (при Т1 ³ 2Т2) или колебательный (при Т1 < 2Т2).

 

В связи с этим выделяют звенья второго порядка:

· апериодическое 2-го порядка (Т1 ³ 2Т2),

· инерционное (Т1 < 2Т2),

· консервативное (Т1 = 0).

6) Запаздывающее.

Если при подаче на вход объекта некоторого сигнала он реагирует на этот сигнал не моментально, а спустя некоторое время, то говорят, что объект обладает запаздыванием.

Запаздывание – это интервал времени от момента изменения входного сигнала до начала изменения выходного.

Запаздывающее звено – это звено, у которого выходная величина у в точности повторяет входную величину х с некоторым запаздыванием t:

y(t) = x(t - t).

Передаточная функция звена:

W(s) = e-ts.

Примеры запаздываний: движение жидкости по трубопроводу (сколько жидкости было закачано в начале трубопровода, столько ее выйдет в конце, но через некоторое время, пока жидкость движется по трубе), движение груза по конвейеру (запаздывание определяется длиной конвейера и скоростью движения ленты) и т.д.

 

Соединения звеньев

Поскольку исследуемый объект в целях упрощения анализа функционирования разбит нами на звенья, то после определения передаточных функций для каждого звена встает задача объединения их в одну передаточную функцию объекта. Вид передаточной функции объекта зависит от последовательности соединения звеньев:

1) Последовательное соединение.

Wоб = W1.W2.W3

При последовательном соединении звеньев их передаточные функции перемножаются.

 

2) Параллельное соединение.

Wоб = W1 + W2 + W3 + …

При параллельном соединении звеньев их передаточные функции складываются.

 

3) Обратная связь

Передаточная функция по заданию (х):

«+» соответствует отрицательной ОС,

«-» - положительной.

Для определения передаточных функций объектов, имеющих более сложные соединения звеньев, используют либо последовательное укрупнение схемы, либо преобразуют по формуле Мезона [26].

 








Дата добавления: 2016-06-24; просмотров: 1864;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.