Решение нормальных уравнений по алгоритму Гаусса

Решение нормальных уравнений выполняют в схеме Гаусса (табл. 2).

Для вычисления преобразованных коэффициентов нужно постоянный множитель (-[ab]/[aa]), стоящий в первой элиминационной строке над квадратичным коэффициентом [bb], умножать по строке на вышестоящие числа и складывать каждый раз с элементами второго нормального уравнения

Таблица 2

Схема решения нормальных уравнений коррелат (r = 2; πi = 1)

Правило развертывания символа Гаусса: "Cимвол развертывается в разность. Уменьшаемое - тот же символ, но со значком на единицу меньше. Вычитаемое - дробь. Знаменатель дроби - квадратичный коэффициент, буква которого соответствует номеру развертываемого символа. Числитель - произведение двух символов, каждый из которых получен заменой буквы уменьшаемого на букву знаменателя".

Последняя коррелата равна числу, стоящему в столбце w последней элиминационной строки. Коррелата к1 вычисляется с использованием чисел первой элиминационной строки от столбца w налево.

[vv] или [pvv] - для неравноточных измерений - получают как сумму произведений чисел элиминационных строк столбца w на вышестоящие числа того же столбца, знак "минус" отбрасывают:

(16)

Обратный вес функции 1/PF получают, как сумму [ff] и произведений чисел элиминационных строк столбца F на вышестоящие числа того же столбца:

Заключительный контроль решения нормальных уравнений осуществляется подстановкой коррелат в суммарное уравнение:

([aS] - [af])к1 + ([bS] - [bf])к2 + ... + ([rS] - [gf])кr + [w] = 0. (17)








Дата добавления: 2016-06-24; просмотров: 2133;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.