Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми.
Идеальный газ из фермионов — ферми-газ — описывается квантовой статистикой Ферми — Дирака.Распределение фермионов по энергиям имеет вид
где <Ni>—среднее число фермионов в квантовом состоянии с энергией Ei, m — химический потенциал. В отличие от (235.1) m может иметь положительное значение (это не приводит к отрицательным значениям чисел <Ni>). Это распределение называется распределением Ферми — Дирака. (Ei-m)/(kT) Если е(Ei-m)/(kT)>>1, то распределения Бозе — Эйнштейна (235.1) и Ферми — Дирака (235.2) переходят в классическое распределение Максвелла — Больцмана:
(ср. с выражением (44.4)), где
Таким образом, при высоких температурах оба «квантовых» газа ведут себя подобно классическому газу.
Для фермионов (электроны являются фермионами) среднее число частиц в квантовом состоянии и вероятность заселенности квантового состояния совпадают, так как квантовое состояние либо может быть не заселено, либо в нем будет находиться одна частица. Это означает, что для фермионов <N(E)> =f(E), где f(E) — функция распределения электронов по состояниям. Из (236.1) следует, что при Т=0К
функция распределения <N(E)³1, если E<m0, и <N(E)³0, если E>m0. График этой функции приведен на рис. 312, а. В области энергий от 0 до m0 функция <N(E)> равна единице. При E=m0она скачкообразно изменяется до нуля. Это означает, что при Т=0К все нижние квантовые состояния, вплоть до состояния с энергией E=m0, заполнены электронами, а все состояния с энергией, большей m0, свободны. Следовательно, m0есть не что иное, как максимальная кинетическая энергия, которую могут иметь электроны проводимости в металле при 0 К. Эта максимальная кинетическая энергия называется энергией Фермии обозначается ЕF (EF=m0). Поэтому распределение Ферми — Дирака обычно записывается в виде
Наивысший энергетический уровень, занятый электронами, называется уровнем Ферми.Уровню Ферми соответствует энергия Ферми ЕF, которую имеют электроны на этом уровне. Уровень Ферми, очевидно, будет тем выше, чем больше плотность электронного газа. Работу выхода электрона из металла нужно отсчитывать не от дна «потенциальной ямы», как это делалось в классической теории, а от уровня Ферми, т. е. от верхнего из занятых электронами энергетических уровней.
Дата добавления: 2016-06-13; просмотров: 805;