Регуляция обмена кальция и фосфора. Роль паратгормона и тиреокальцитонина. Витамин Д. Роль 1,25-дигидроксикальциферола в регуляции кальция и фосфатов. Рахит.

Концентрация кальцияво внеклеточной жидкости в норме поддерживается на строго постоянном уровне, редко повышаясь или снижаясь на несколько процентов относительно нормальных величин, составляющих 9,4 мг/дл, что эквивалентно 2,4 ммоль кальция на литр. Такой строгий контроль очень важен в связи с основной ролью кальция во многих физиологических процессах, включая сокращение скелетных, сердечной и гладких мышц, свертывание крови, передачу нервных импульсов. Возбудимые ткани, в том числе нервная, очень чувствительны к изменениям концентрации кальция, и увеличение концентрации ионов кальция по сравнению с нормой (гипсркальциемия) вызывает нарастающее поражение нервной системы; напротив, снижение концентрации кальция (гипокальциемия) повышает возбудимость нервной системы.

Важная особенность регуляции концентрации внеклеточного кальция: только около 0,1% общего количества кальция организма присутствует во внеклеточной жидкости, около 1 % — находится внутри клеток, а остальное количество хранится в костях, поэтому кости могут рассматриваться в качестве большого хранилища кальция, выделяющего его во внеклеточное пространство, если концентрация кальция там снижается, и, напротив, забирающего избыток кальция на хранение.

Приблизительно 85% фосфатов организма хранится в костях, от 14 до 15% — в клетках, и только менее 1% присутствует во внеклеточной жидкости. Концентрация фосфатов во внеклеточной жидкости не так строго регулируется, как концентрация кальция, хотя они выполняют разнообразные важные функции, контролируя многие процессы совместно с кальцием.

Всасывание кальция и фосфатов в кишечнике и их экскреция с калом. Обычная скорость поступления кальция и фосфатов составляет приблизительно 1000 мг/сут, что соответствует количеству, извлекаемому из 1 л молока. Обычно двухвалентные катионы, такие как ионизированный кальций, плохо абсорбируются в кишечнике. Однако, как обсуждается далее, витамин D способствует всасыванию кальция в кишечнике, и почти 35% (около 350 мг/сут) потребленного кальция абсорбируется. Оставшийся в кишечнике кальций попадает в каловые массы и удаляется из организма. Дополнительно около 250 мг/сут кальция попадает в кишечник в составе пищеварительных соков и слущивающихся клеток. Таким образом, около 90% (900 мг/сут) из ежесуточного поступления кальция выводится с калом.

Гипокальциемия вызывает возбуждение нервной системы и тетанию. Если концентрация ионов кальция во внеклеточной жидкости падает ниже нормальных значений, нервная система постепенно становится все более возбудимой, т.к. это изменение приводит к повышению проницаемости для ионов натрия, облегчая генерацию потенциала действия. В случае падения концентрации ионов кальция до уровня, составляющего 50% нормы, возбудимость периферических нервных волокон становится так велика, что они начинают спонтанно разряжаться.

Гиперкальциемия понижает возбудимость нервной системы и мышечную активность. Если концентрация кальция в жидких средах организма превышает норму, возбудимость нервной системы снижается, что сопровождается замедлением рефлекторных ответов. Увеличение концентрации кальция приводит к снижению интервала QT на электрокардиограмме, снижению аппетита и запорам, возможно, вследствие снижения контрактильной активности мышечной стенки гастроинтестинального тракта.

Эти депрессивные эффекты начинают проявляться, когда уровень кальция поднимается выше 12 мг/дл, и становятся заметными, когда уровень кальция превышает 15 мг/дл.

Формирующиеся нервные импульсы достигают скелетных мышц, вызывая тетанические сокращения. Следовательно, гипокальциемия вызывает тетанию, иногда она провоцирует эпилептиформные приступы, поскольку гипокальциемия повышает возбудимость мозга.

Всасывание фосфатов в кишечнике осуществляется легко. Кроме тех количеств фосфатов, которые выводятся с калом в виде солей кальция, почти все содержащиеся в дневном рационе фосфаты всасываются из кишечника в кровь и затем экскретируются с мочой.

Экскреция кальция и фосфатов почкой. Приблизительно 10% (100 мг/сут) поступившего в организм кальция экскретируются с мочой, около 41% кальция в плазме связано с белками и поэтому не фильтруется из гломерулярных капилляров. Оставшееся количество объединяется с анионами, например с фосфатами (9%), или ионизируется (50%) и фильтруется клубочками в почечные канальцы.

В норме в канальцах почки реабсорбируется 99% отфильтрованного кальция, поэтому в сутки экскретируются с мочой почти 100 мг кальция. Приблизительно 90% кальция, содержащегося в гломерулярном фильтрате, реабсорбируется в проксимальных канальцах, петле Генле и в начале дистальных канальцев. Затем в конце дистальных канальцев и в начале собирательных протоков реабсорбируются оставшиеся 10% кальция. Реабсорбция становится высокоизбирательной и зависит от концентрации кальция в крови.

Если концентрация кальция в крови низка, реабсорбция возрастает, в итоге кальций почти не теряется с мочой. Напротив, когда концентрация кальция в крови незначительно превышает нормальные значения, экскреция кальция значительно увеличивается. Наиболее важным фактором, контролирующим реабсорбцию кальция в дистальных отделах нефрона и, следовательно, регулирующим уровень экскреции кальция, является паратгормон.

Почечная экскреция фосфатов регулируется механизмом обильного потока. Это означает, что когда концентрация фосфатов в плазме снижается ниже критического значения (около 1 ммоль/л), все фосфаты из гломеруляр-ного фильтрата реабсорбируются и перестают выводиться с мочой. Но если концентрация фосфатов превышает значение нормы, потери его с мочой прямо пропорциональны дополнительному увеличению его концентрации. Почки регулируют концентрацию фосфатов в экстрацеллюлярном пространстве, изменяя скорость экскреции фосфатов соответственно их концентрации в плазме и скорости фильтрации фосфатов в почке.

Однако, как мы увидим далее, паратгормон может существенно увеличить экскрецию фосфатов почками, поэтому он играет важную роль в регуляции концентрации фосфатов в плазме наряду с контролем концентрации кальция. Паратгормонявляется мощным регулятором концентрации кальция и фосфатов, осуществляющим свои влияния, управляя процессами реабсорбции в кишечнике, экскрецией в почке и обменом этих ионов между внеклеточной жидкостью и костью.

Избыточная активность паращитовидных желез вызывает быстрое вымывание солей кальция из костей с последующим развитием гиперкальциемии во внеклеточной жидкости; напротив, гипофункция паращитовидных желез приводит к гипокальциемиии, часто — с развитием тетании.

Функциональная анатомия паращитовидных желез. В норме у человека существуют четыре паращитовидные железы. Они расположены сразу после щитовидной железы, попарно у верхнего и нижнего ее полюсов. Каждая паращитовидная железа является образованием около 6 мм длиной, 3 мм шириной и 2 мм высотой.

Макроскопически паращитовидные железы выглядят как темный бурый жир, определить их местонахождение во время операции на щитовидной железе затруднительно, т.к. они часто выглядят, как дополнительная доля щитовидной железы. Именно поэтому до момента, когда была установлена важность этих желез, тотальная или субтотальная тиреоидэктомия заканчивалась одновременным удалением паращитовидных желез.

Удаление половины околощитовидных желез не вызывает серьезных физиологических нарушений, удаление трех или всех четырех желез приводит к транзиторному гипопаратиреоидизму. Но даже небольшое количество оставшейся ткани паращитовидной железы способно за счет гиперплазии обеспечить нормальную функцию паращитовидных желез.

Паратиреоидные железы взрослого человека состоят преимущественно из главных клеток и из большего или меньшего количества оксифильных клеток, которые отсутствуют у многих животных и у молодых людей. Главные клетки предположительно секретируют большее, если не все количество паратгормона, а у оксифильных клеток — свое предназначение.

Считается, что они являются модификацией или исчерпавшей свой ресурс формой главных клеток, которые больше не синтезируют гормон.

Химическая структура паратгормона. ПТГ выделен в очищенном виде. Первоначально он синтезируется на рибосомах в виде препрогормона, полипептидной цепочки из ПО аминокислотных остатков. Затем расщепляется до прогормона, состоящего из 90 аминокислотных остатков, потом — до стадии гормона, который включает 84 аминокислотных остатка. Процесс этот осуществляется в эндоплазматическом ретикулуме и аппарате Гольджи.

В итоге гормон упаковывается в секреторные гранулы в цитоплазме клеток. Окончательная форма гормона имеет молекулярную массу 9500; более мелкие соединения, состоящие из 34 аминокислотных остатков, примыкающие к N-концу молекулы паратгормона, также выделенные из паращитовидных желез, обладают активностью ПТГ в полной мере. Установлено, что почки полностью выводят форму гормона, состоящую из 84 аминокислотных остатков, очень быстро, в течение нескольких минут, в то время как оставшиеся многочисленные фрагменты длительное время обеспечивают поддержание высокой степени гормональной активности.

Тиреокальцитонин— гормон, вырабатываемый у млекопитающих и у человека парафолликулярными клетками щитовидной железой, паращитовидной железой и вилочковой железой. У многих животных, например, рыб, аналогичный по функциям гормон производится не в щитовидной железе (хотя она есть у всех позвоночных животных), а в ултимобранхиальных тельцах и потому называется просто кальцитонином. Тиреокальцитонин принимает участие в регуляции фосфорно-кальциевого обмена в организме, а также баланса активности остеокластов и остеобластов, функциональный антагонист паратгормона. Тиреокальцитонин понижает содержание кальция и фосфата в плазме крови за счёт усиления захвата кальция и фосфата остеобластами. Он также стимулирует размножение и функциональную активность остеобластов. Одновременно тиреокальцитонин тормозит размножение и функциональную активность остеокластов и процессы резорбции кости. Тиреокальцитонин является белково-пептидным гормоном, с молекулярной массой3600. Усиливает отложение фосфорно-кальциевых солей на коллагеновую матрицу костей. Тиреокальцитонин, как и паратгормон, усиливает фосфатурию.

Кальцитриол

Строение: Представляет собой производное витамина D и относится к стероидам.

Синтез: Образующийся в коже под действием ультрафиолета и поступающие с пищей холекальциферол (витамин D3) и эргокальциферол (витамин D2) гидроксилируются в печени по С25 и в почках по С1. В результате формируется 1,25-диоксикальциферол (кальцитриол).

Регуляция синтеза и секреции

Активируют: Гипокальциемия повышает гидроксилирование по С1 в почках.

Уменьшают: Избыток кальцитриола подавляет гидроксилирование по С1 в почках.

Механизм действия: Цитозольный.

Мишени и эффекты: Эффект кальцитриола заключается в увеличении концентрации кальция и фосфора в крови:

в кишечнике индуцирует синтез белков, отвечающих за всасывание кальция и фосфатов, в почках повышает реабсорбцию кальция и фосфатов, в костной ткани усиливает резорбцию кальция. Патология: Гипофункция Соответствует картине гиповитаминоза D. Роль 1.25-дигидроксикальци-ферола в обмене Ca и P.: Усиливает всасывание Ca и P из кишечника, Усиливает реабсорбцию Ca и P почками, Усиливает минерализацию молодой кости, Стимулирует остеокласты и выход Ca из старой кости.

Витамин D (кальциферол, антирахитический)

Источники: Имеется два источника поступления витамина D:

печень, дрожжи, жирномолочные продукты (сливочное масло, сливки, сметана), желток яиц,

образуется в коже при ультрафиолетовом облучении из 7-дегидрохолестерола в количестве 0,5-1,0 мкг/сут.

Суточная потребность: Для детей – 12-25 мкг или 500-1000 МЕ, у взрослых потребность гораздо меньше.

Строение: Витамин представлен двумя формами – эргокальциферол и холекальциферол. Химически эргокальциферол отличается от холекальциферола наличием в молекуле двойной связи между С22 и С23 и метильной группой при С24.

После всасывания в кишечнике или после синтеза в коже витамин попадает в печень. Здесь он гидроксилируется по С25 и кальциферолтранспортным белком переносится к почкам, где еще раз гидроксилируется, уже по С1. Образуется 1,25-дигидроксихолекальциферол или кальцитриол. Реакция гидроксилирования в почках стимулируется паратгормоном, пролактином, соматотропным гормоном и подавляется высокими концентрациями фосфатов и кальция.

Биохимические функции: 1. Увеличение концентрации кальция и фосфатов в плазме крови.Для этого кальцитриол:стимулирует всасывание ионов Ca2+ и фосфат-ионов в тонком кишечнике (главная функция),стимулирует реабсорбцию ионов Ca2+ и фосфат-ионов в проксимальных почечных канальцах.

2. В костной ткани роль витамина D двояка:

стимулирует выход ионов Ca2+ из костной ткани, так как способствует дифференцировке моноцитов и макрофагов в остеокласты и снижению синтеза коллагена I типа остеобластами,

повышает минерализацию костного матрикса, так как увеличивает производство лимонной кислоты, образующей здесь нерастворимые соли с кальцием.

3. Участие в реакциях иммунитета, в частности в стимуляции легочных макрофагов и в выработке ими азотсодержащих свободных радикалов, губительных, в том числе, для микобактерий туберкулеза.

4. Подавляет секрецию паратиреоидного гормона через повышение концентрации кальция в крови, но усиливает его эффект на реабсорбцию кальция в почках.

Гиповитаминоз. Приобретенный гиповитаминоз.Причина.

Часто встречается при пищевой недостаточности у детей, при недостаточной инсоляции у людей, не выходящих на улицу или при национальных особенностях одежды. Также причиной гиповитаминоза может быть снижение гидроксилирования кальциферола (заболевания печени и почек) и нарушение всасывания и переваривания липидов (целиакия, холестаз).

Клиническая картина: У детей от 2 до 24 месяцев проявляется в виде рахита, при котором, несмотря на поступление с пищей, кальций не усваивается в кишечнике, а в почках теряется. Это ведет к снижению концентрации кальция в плазме крови, нарушению минерализации костной ткани и, как следствие, к остеомаляции (размягчение кости). Остеомаляция проявляется деформацией костей черепа (бугристость головы), грудной клетки (куриная грудь), искривление голени, рахитические четки на ребрах, увеличение живота из‑за гипотонии мышц, замедляется прорезывание зубов и зарастание родничков.

У взрослых тоже наблюдается остеомаляция, т.е. остеоид продолжает синтезироваться, но не минерализуется. Развитие остеопороза частично также связывают с витамин D-‑недостаточностью.

Наследственный гиповитаминоз

Витамин D-зависимый наследственный рахит I типа, при котором имеется рецессивный дефект почечной α1-гидроксилазы. Проявляется задержкой развития, рахитическими особенностями скелета и т.д. Лечение – препараты кальцитриола или большие дозы витамина D.

Витамин D-зависимый наследственный рахит II типа, при котором наблюдается дефект тканевых рецепторов кальцитриола. Клинически заболевание схоже с I типом, но дополнительно отмечаются аллопеция, milia, эпидермальные кисты, мышечная слабость. Лечение варьирует в зависимости от тяжести заболевания, помогают большие дозы кальциферола.

Гипервитаминоз. Причина

Избыточное потребление с препаратами (не менее 1,5 млн МЕ в сутки).

Клиническая картина: Ранними признаками передозировки витамина D являются тошнота, головная боль, потеря аппетита и веса тела, полиурия, жажда и полидипсия. Могут быть запоры, гипертензия, мышечная ригидность.Хронический избыток витамина D приводит к гипервитаминозу, при котором отмечается:деминерализация костей, приводящая к их хрупкости и переломам.увеличение концентрации ионов кальция и фосфора в крови, приводящее к кальцификации сосудов, ткани легких и почек.

Лекарственные формы

Витамин D – рыбий жир, эргокальциферол, холекальциферол.

1,25-Диоксикальциферол (активная форма) – остеотриол, оксидевит, рокальтрол, форкал плюс.

58. Гормоны, производные жирных кислот. Синтез. Функции.

По химической природе гормональные молекулы относят к трем группам соединений:

1)белки и пептиды; 2) производные аминокислот; 3) стероиды и производные жирных кислот.

К эйкозаноидам (είκοσι, греч.-двадцать) относят окисленные производные эйкозановых к-т: эйкозотриеновой (С20:3), арахидоновой (С20:4), тимнодоновой (С20:5) ж-х к-т. Активность эйкозаноидов значительно разнится от числа двойных связей в молекуле, которое зависит от строения исходной ж-ой к-ы. Эйкозаноиды называют гормоноподобными вещ-ми, т.к. они могут оказывать только местное действие, сохраняясь в крови в течение неск-х сек. Обр-ся во всех органах и тканях практически всеми типами кл. Депонироваться эйкозаноиды не могут, разрушаются в течение неск-их сек, и поэтому кл должна синтезировать их постоянно из поступающих жирных кислот ω6- и ω3-ряда. Выделяют три основные группы:

Простагландины (Pg) – синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой системы, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов, типа клетки и условий. Они также влияют на температуру тела. Могут активировать аденилатциклазу Простациклины являются подвидом простагландинов (Pg I), вызывают дилатацию мелких сосудов, но еще обладают особой функцией – ингибируют агрегацию тромбоцитов. Их активность возрастает при увеличении числа двойных связей. Синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка. Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение сосудов. Их активность снижается при увеличении числа двойных связей. Увеличивают активность фосфоинозитидного обмена Лейкотриены (Lt) синтезируются в лейкоцитах, в клетках легких, селезенки, мозга, сердца. Выделяют 6 типов лейкотриенов A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления, в целом они активируют реакции воспаления, предотвращая его хронизацию. Также вызывают сокращение мускулатуры бронхов (в дозах в 100-1000 раз меньших, чем гистамин). повышают проницаемость мембран для ионов Са2+. Поскольку цАМФ и ионы Са2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.

Источником свободных эйкозановых кислот являются фосфолипиды клеточной мембраны. Под влиянием специфических и неспецифических стимулов активируются фосфолипаза А2 или комбинация фосфолипазы С и ДАГ-липазы, которые отщепляют жирную кислоту из положения С2 фосфолипидов.

Полиненасыщенная ж-я к-та метаболизирует в основном 2я путями: циклооксигеназным и липоксигеназным, активность которых в разных клетках выражена в разной степени. Циклооксигеназный путь отвечает за синтез простагландинов и тромбоксанов, липоксигеназный – за синтез лейкотриенов.

 

Биосинтезбольшинства эйкозаноидов начинается с отщепления арахидоновой к-ты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функ-ую преимущественно на мембранах ЭПС. Обр-ся эйкозаноиды легко проникают ч/з плазматическую мембрану кл, а затем ч/з межклеточное простр-во переносятся на соседние кл или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увел-ся под влиянием гормонов и нейромедиаторов, акт-их аденилатциклазу или повышающих концентрацию ионов Са2+ в кл. Наиболее интенсивно обр-е простагландинов происходит в семенниках и яичниках. Во многих тканях кортизол тормозит осв-ие арахидоновой к-ты, что приводит к подавлению обр-я эйкозаноидов, и тем самым оказывает противовосп-е действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина. Период полураспада эйкозаноидов составляет 1-20 с. Ферменты, инактивирующие их, имеются пр-ки во всех тканях, но наибольшее их кол-во сод-ся в легких. Лек-я рег-я синтеза: Глюкокортикоиды, опосредованно ч/з синтез специфич белков, блокируют синтез эйкозаноидов, за счет снижения связывания фосфолипидов фосфолипазой А2, что предотвращает высвобождение полиненасыщенной к-ты из фосфолипида. Нестероидные противовос-е средства (аспирин, индометацин, ибупрофен) необратимо ингиб-т циклооксигеназу и снижают выработку простагландинов и тромбоксанов.

60. Витамины Е. К и убихинон, их участие в обмене веществ.

Витамины группы Е (токоферолы). Название «токоферол» витамина Е — от греческого «токос» — «рождение» и «ферро» — носить. Его обнаружили в масле из проросших зерен пшеницы. В настоящее время известно семейство токоферолов и токотриенолов, найденных в природных источниках. Все они - метальные производные исходного соединения токола, по строению очень близки и обозначаются буквами греческого алфавита. Наибольшую биологическую активность проявляет α-токоферол.

Токоферол нерастворим в воде; как и витамины А и D, он растворим в жирах, устойчив к воздействию кислот, щелочей и высокой температуре. Обычное кипячение на него почти не влияет. А вот свет, кислород, ультрафиолетовые лучи или химические окислители действуют губительно.

Витамин Е содержится гл. обр. в липопротеиновых мембранах клеток и субклеточных органелл, где локализован благодаря межмол. взаимод. с ненасыщ. жирными к-тами. Его биол. активностьоснована на способности образовывать устойчивые своб. радикалы в результате отщепления атома Н от гидроксильной группы. Эти радикалы могут вступать во взаимод. со своб. радикалами, участвующими в образовании орг. пероксидов. Тем самым витамин Е предотвращает окисление ненасыщ. липидов и предохраняет от разрушения биол. мембраны и другие молекулы, например ДНК.

Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.

Источники: для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.

Суточная потребность взрослого человека в витамине примерно 5 мг.

Клинические проявления недостаточности у человека до конца не изучены. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.

УБИХИНОНЫ (коферменты Q) –широко распространенное вещество и был обнаружен в растениях, грибах, животных и м/о. Относят к группе жирорастворимых витаминоподобных соединений, плохо растворяется в воде, но разрушается при воздействии кислорода и высоких температур. В классическом понимании убихинон не витамин, так как в достаточном количестве синтезируется в организме. Но при некоторых заболеваниях естественный синтез кофермента Q уменьшается и его не хватает для удовлетворения потребности, тогда он становится незаменимым фактором.

Убихиноны играют важную роль в биоэнергетике клетки большинства прокариот и всех эукариот. Осн. ф-ция убихинонов- перенос электронов и протонов от разл. субстратов к цитохромам при дыхании и окислительном фосфорилировании. Убихиноны, гл. обр. в восстановленной форме (убихинолы, QnH2), выполняют ф-цию антиоксидантов. Могут быть простетич. группой белков. Выделены Q-связывающие белки трех классов, действующие в дыхат. цепи на участках функционирования ферментов сукцинату-бихинонредуктазы, НАДН-убихинонредуктазы и цитохромов в и с1.

В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа:

Е (FMNH2) + Q → Е (FMN) + QH2.

Симптомы дефицита: 1) анемия2) изменения в скел мускулатуре 3) сердечная недост 4) изменения в костном мозге

Симптомы передозировки: возможна только при избыточном введении и обычно проявляется тошнотой, нарушениями стула и болями в животе.

Источники:Растительные - Зародыши пшеницы, растительные масла, орехи, капуста. Животные - Печень, сердце, почки, говядина, свинина, рыба, яйца, курятина. Синтезируется микрофлорой кишечника.

Суточная потребность: Считается, что при обычных условиях организм покрывает потребность полностью, но есть мнение, что это необходимое суточное количество составляет 30-45 мг.

Структурные формулы рабочей части коферментов FAD и FMN. В ходе реакции FAD и FMN присоединяют 2 электрона и, в отличие от NAD+, оба теряемых субстратом протона.

63. Витамины С и Р, строение, роль. Цинга.

 

Витамин Р (биофлавоноиды; рутин, цитрин; витамин проницаемости)

В настоящее время известно, что понятие "витамин Р" объединяет семейство биофлавоноидов (катехины, флавононы, флавоны). Это очень разнообразная группа растительных полифенольных соединений, влияющих на проницаемость сосудов сходным образом с витамином С.

Под термином «витамин Р», повышающим резистентность капилляров (от лат. permeability – проницаемость), объединяется группа веществ со сходной биологической активностью: катехины, халконы, дигидрохалконы, флавины, флавононы, изофлавоны, флавонолы и др. Все они обладают Р-витаминной активностью, и в основе их структуры лежит дифенилпропановый углеродный «скелет» хромона или флавона. Этим объясняется их общее название «биофлавоноиды».

Витамин Р усваивается лучше в присутствии аскорбиновой кислоты, а высокая температура легко её разрушает.

Источники: лимоны, гречиха, черноплодная рябина, чёрная смородина, листья чая, плоды шиповника.

Суточная потребность для человека Составляет, в зависимости от образа жизни, 35-50 мг в день.

Биологическая роль флавоноидов заключается в стабилизации межклеточного матрикса соединительной ткани и уменьшении проницаемости капилляров. Многие представители группы витамина Р обладают гипотензивным действием.

-Витамин Р "оберегает" гиалуроновую кислоту, которая укрепляет стенки сосудов и является основным компонентом биологической смазки суставов, от разрушающего действия ферментов гиалуронидаз. Биофлавоноиды стабилизируют основное вещество соединительной ткани путем ингибирования гиалуронидазы, что подтверждается данными о положительном влиянии Р-витаминных препаратов, как и аскорбиновой кислоты, в профилактике и лечении цинги, ревматизма, ожогов и др. Эти данные указывают на тесную функциональную связь витаминов С и Р в окислительно-восстановительных процессах организма, образующих единую систему. Об этом косвенно свидетельствует лечебный эффект, оказываемый комплексом витамина С и биофлавоноидов, названный аскорутином. Витамин Р и витамин С тесно связаны между собой.

-Рутин повышает активность аскорбиновой кислоты. Защищая от окисления, помогает лучшему её усвоению, он по праву считается "главный партнёр" аскорбинки. Укрепляя стенки кровеносных сосудов и уменьшая их ломкость, он тем самым снижает риск внутренних кровоизлияний, предупреждает образование атеросклеротических бляшек.

-Нормализует повышенное артериальное давление, способствуя расширению сосудов. Способствует формированию соединительной ткани, а следовательно быстрому заживлению ран и ожогов. Способствует профилактике варикозного расширения вен.

-Положительно влияет на работу эндокринной системы. Используется для профилактики и дополнительного средства в лечении артрита ― тяжелого заболевания суставов и подагры.

-Повышает иммунитет, обладает противовирусной активностью.

Заболевания: Клиническое проявление гипоавитаминоза витамина Р характеризуется повышенной кровоточивостью дёсен и точечными подкожными кровоизлияниями, общей слабостью, быстрой утомляемостью и болями в конечностях.

Гипервитаминоз: Флавоноиды не токсичны и случаев передозировки не замечено, поступившие с пищей излишки легко выводятся из организма.

Причины: Недостаток биофлавоноидов может возникать на фоне длительного приема антибиотиков (или в больших дозах) и других сильнодействующих препаратов, при любом неблагоприятном воздействии на организм, например, травма или хирургическое вмешательство.








Дата добавления: 2016-06-13; просмотров: 2549;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.035 сек.