Классификация математических моделей.

Моделирование. Основные понятия. Модель. Виды моделирования. Математическая модель. Вычислительный эксперимент. Алгоритм.

Моделирование представляет собой процесс замещения объекта исследования некоторой его моделью и проведение исследований на модели с целью получения необходимой информации об объекте.

Модель - это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта.

Виды моделирования: предметное и абстрактное

При предметном моделировании строят физическую модель, которая соответствующим образом отображает основные физические свойства и характеристики моделируемого объекта.

Разновидность – физическое моделирование: создание макетного или экспериментального образца изделия и последующее исследование его свойств.

Абстрактное моделирование связано с построением абстрактной модели. Такая модель представляет собой математические соотношения, графы, схемы, диаграммы и т. п. Наиболее мощным и универсальным методом абстрактного моделирования является математическое моделирование. Математическое моделирование позволяет при помощи математических символов и зависимостей составить описание происходящего процесса.

Математическая модель - это совокупность математических объектов и соотношений между ними, адекватно отображающая свойства и поведение исследуемого объекта. Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью. Точность оценивается степенью совпадения предсказанных в процессе вычислительного эксперимента на модели значений выходных параметров с истинными их значениями.

Алгоритм - это предписание, определяющее последовательность выполнения операций вычислительного процесса.


 

Классификация математических моделей.

По способу представления, модели могут быть:

Аналитические модели компонентов представляются в виде уравнений вольтамперных характеристик или в форме дифференциальных уравнений переходных процессов, характеризующих инерционность компонента.

Графические модели могут быть заданы в виде графиков вольтамперных характеристик или в виде схем замещения.

Табличные модели задаются в виде цифровых таблиц, обычно соответствующих графикам экспериментальных вольтамперных характеристик, для которых трудно найти аналитическое выражение.

По характеру зависимостей, используемых для моделирования, модели делятся на два больших класса:

Нелинейные модели описываются нелинейными уравнениями (аналитически), например, y(x) = log x, или различными кривыми (графически).

Линейные модели описываются линейными уравнениями (аналитически), например y(x) = K ⋅ x +C, или прямыми (графически).

По способам получения математические модели делятся на:

Теоретические модели получают на основе описания физических процессов функционирования объекта. Как правило, они записываются в аналитической форме. При построении теоретических моделей используется физический и формальный подходы.

Экспериментальные модели получают на основе поведения объекта во внешней среде. Объект рассматривая его как “черный ящик”. Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).


 








Дата добавления: 2016-06-13; просмотров: 972;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.