Синхронизирующие устройства (СУ).

 

Назначением СУ является привязка включающих импульсов тиристоров к определенным точкам синусоидального напряжения питания силовой части преобразователя. Поэтому, если преобразователь трехфазный, на СУ должно быть непременно подано 3-х фазное питающее напряжение.

Простейшим, наиболее распространенным СУ-ом является трансформатор. В качестве примера рассмотрим СУ, которое используется в системах управления 3-х фазных мостовых преобразователей. Схема этого устройства, представляющего собой трансформатор, на первичную обмотку которого подается трехфазное напряжение сети, изображена на рис 32:

Рис 32

 

В соответствии с принципом действия 3-х фазного мостового ТП на его тиристоры при шестиканальной системе управления должны поступать включающие импульсы, сдвинутые друг относительно друга на угол p/3. Вторичные обмотки синхронизирующего устройства выполнены со средней точкой, причем, эта точка соединяет начало и конец каждой полуобмотки. Поэтому со вторичных обмоток снимается шестифазное напряжение, векторная диаграмма которого представлена на том же рисунке. Схема позволяет использовать как фазные, так и линейные напряжения вторичных обмоток синхронизирующего устройства.

Так точке естественной коммутации линейных напряжений “ау” и “az” (1) соответствует переход через нулевое значение напряжения “bz” (2).

 

Рис 33

 

Этот переход может быть легко зафиксирован с помощью вентильного элемента и, значит, в этот момент может быть послан импульс в фазосдвигающее устройство, которое, с этого момента начинает отсчет угла a. Т.о. синхронизирующее устройство определяет момент естественной коммутации и в это время посылает сигнал в ФСУ.

Недостатком синхронизирующих устройств, выполненных в виде трансформатора, является чувствительность параметров напряжений вторичных обмоток к амплитудным и фазовым искажениям питающей сети, а также к различного рода помехам, возникающим в ней при эксплуатации. Для устранения этих помех к СУ подключают различные фильтры, как пассивные, состоящие обычно из реактивных элементов, так и активные.

 

3.5.2.2. Фазосдвигающее устройство (ФСУ).

 

Назначение ФСУ в СИФУ ТП - регулирование фазы включающих импульсов тиристоров. Возможны различные принципы их реализации, но неизменным является то, что ФСУ осуществляет сдвиг импульса относительно момента естественной коммутации в сторону запаздывания на угол a, величина которого регулируется в зависимости от значения управляющего напряжения UУ . Мы рассмотрим два принципа фазосмещения, нашедших распространение в реальных ТП. Один из них называется вертикальный, другой- интегральный принципы.

 

3.5.2.3.Вертикальный принцип фазосмещения управляющих импульсов ТП.

 

Сущность вертикального фазового управления заключается в сравнении переменного напряжения (пилообразной, синусоидальной, треугольной и других форм) с постоянным напряжением регулируемой величины, поступающим от устройств автоматического регулирования. На рис 34 представлена структурная схема одного из вариантов ФСУ подобного типа. Основными узлами его являются генератор пилообразного напряжения (ГПН) синхронизированный с синусоидальным питающим напряжением с помощью СУ, нуль-орган НО (компаратор) и источник регулируемого постоянного напряжения, величина которого UУ регулируется вручную или автоматически.

В этой схеме формирование включающего импульса происходит в момент равенства пилообразного напряжения генератора Uг и напряжения управления UУ. При изменении UУ изменяется фаза управляющего импульса. Функции сравнивающего устройства выполняет нуль- орган “НО”, на входы которого поступают напряжения UУ и Uг. Нуль- орган может быть выполнен по различным схемам и на разной элементной базе. Например, может быть использована схема компаратора, выполненная на операционном усилителе.

Генератор пилообразного напряжения в описанной схеме имеет линейно спадающее напряжение, мгновенное значение которого сравнивается с UУ. Обычно в таких ГПН используется процесс заряда емкости постоянным по величине током.

Рис 34

 

Недостатком этого ГПН является нелинейность характеристики “вход-выход” тиристорного преобразователя. Эта нелинейность обусловлена нелинейной зависимостью Ed = ¦(a). При линейном пилообразном напряжении сохраняется линейная зависимость a = ¦(UУ ), но зависимость выходной ЭДС от UУ остается нелинейной. Это обстоятельство является существенным недостатком ТП, т.к. в системах АЭП приходится устранять эту нелинейность теми или иными методами.

Иногда указанная нелинейность компенсируется за счет нелинейности опорного напряжения (переменное напряжение, которое сравнивается по величине с UУ ). Нелинейность опорного напряжения должна быть такой, чтобы она компенсировала нелинейность регулировочной характеристики ТП. Чаще всего в качестве опорного напряжения используется часть синусоиды напряжения питания ТП, а именно ее косинусоидальная часть.

На рис 35 изображена диаграмма напряжения трехфазного нулевого ТП, а также, диаграмма напряжений при формировании управляющих импульсов. Как и на предыдущей диаграмме здесь реализован вертикальный принцип фазосмещения. При этом, в качестве опорного напряжения использована косинусоидальная часть переменного напряжения не участвующей в коммутации фазы. Так, при коммутации фаз “a”-“b” опорным напряжением является “перевернутая” фаза “c”; при коммутации фаз “b”-“c”, опорное напряжение- “перевернутая” фаза “а” и т.д.

В соответствии с диаграммой, зависимость угла a от UУ - арккосинусоидальная (a = arccos UУ ), зависимость Ud от a - косинусоидальная (Ud = Ud0 cos a ). Зависимость же Ud = ¦(UУ ), вследствие того, что одна нелинейность компенсирует другую, оказывается линейной. Это показано на рис 36:

 

Рис 36

 

Достоинства описанной системы очевидны. Линейность характеристики вход-выход тиристорного преобразователя существенно облегчает включение его в систему автоматического регулирования координат электропривода.

Во-вторых, облегчается синхронизация опорного напряжения с напряжением питающей сети, т.к. это опорное напряжение не что иное, как часть синусоиды одной из фаз того- же напряжения сети. Однако, на пути внедрения этой системы стояли некоторые объективные трудности. Дело в том, что напряжению сети свойственна некоторая нестабильность, что затрудняло использование его в качестве опорного напряжения. Такая нестабильность, как высокочастотные искажения синусоиды устраняется с помощью фильтров. Сложнее преодолеваются трудности, связанные с “посадками” напряжения, которые допускаются “Правилами эксплуатации электроустановок” в определенных пределах. Но в СИФУ уменьшение амплитуды опорного напряжения чревато пропусками управляющих импульсов, что недопустимо. Во избежание этого, в высшей точке опорного напряжения создается импульс напряжения, что не позволяет UУ при максимальных его значениях избежать пересечения с Uопорн .(рис 35).

Наконец, последняя трудность связана с изменяющимся наклоном кривой опорного напряжения. Чувствительности нуль- органа может не хватить для четкого его срабатывания, когда опорное напряжение выполаживается, т.е. в верхней и в нижней точках.

Возможность преодоления этого затруднения реализовалась, когда появились компараторы на операционных усилителях с очень большими коэффициентами усиления. В настоящее время СИФУ, обеспечивающие линейность характеристики “вход- выход” ТП получают все более широкое распространение.

 

3.5.2.4.Интегральный принцип фазосмещения управляющих импульсов ТП.

 

Сущность этого принципа фазосмещения можно прояснить, рассмотрев структурную схему, изображенную на рис 37:

Рис 37

 

В схему входят следующие элементы:

1. Синхронизирующее устройство(СУ);

2. Регулятор тока (РТ), обеспечивающий ток заряда интегрирующей емкости (си), значение которого определяется величиной управляющего напряжения UУ ;

3. Пороговый элемент (ПЭ) срабатывает при достижении потенциала заряда емкости (си ) порогового значения. При срабатывании ПЭ емкость разряжается через него на выходное устройство (Вых.У), которое формирует управляющий импульс на тиристор.

Схема работает следующим образом:

В моменты естественной коммутации СУ посылает сигнал (импульсы) на РТ. Начиная с момента естественной коммутации РТ обеспечивает заданное значение тока заряда емкости си . Время накопления заряда на емкости до величины потенциала срабатывания порогового элемента- это время задержки подачи управляющего импульса на управляющий электрод тиристора. Оно определяет величину угла управления “a”. Дальше схема работает так, как сказано выше.

Достоинством схем с интегральным принципом фазосмещения является их простота и надежность. Их недостаток- более низкая точность поддержания величины угла “a” на заданном значении. Такие системы находят применение в маломощных ТП с нежесткими требованиями к статическим и динамическим показателям электропривода. Диапазон мощностей электропривода с описанными ТП - (2¸15)кВт.

 

3.5.3.Входные устройства СИФУ ТП.

 

Назначение входного устройства - сформировать аналоговый сигнал управления (UУ ) на СИФУ ТП, учитывающий задающее воздействие, воздействие сигналов обратных связей, корректирующее воздействие. Для реализации возложенных на входное устройство (ВУ) функций необходимо осуществить:

· Фильтрацию всех поступающих сигналов;

· Выполнить все необходимые логические действия с поступившими сигналами (суммирование с учетом их знаков, интегрирование тех сигналов, воздействие которых должно определяться их средними значениями);

· Усиление результирующего сигнала;

· Ограничение UУ допустимыми минимальными и максимальными значениями.

Каждая из перечисленных функций выполняется, обычно, своим, специальным, предназначенным для этого устройством, схемная и элементная реализация которого может иметь массу вариантов. Рассматривать эти варианты нецелесообразно, но некоторые тенденции в реализации этих устройств можно отметить:

· Так как мощности поступающих сигналов малы, в качестве фильтров обычно используют пассивные однозвенные R-C фильтры - Г- образные и П - образные;

· Функция суммирования реализуется обычно сумматором, выполненном на операционном усилителе, например, по схеме приведенной на рис 38:

· Усиление результирующего сигнала выполняется усилителем постоянного тока, выполненным на транзисторах либо на операционных усилителях.

Рис 38

 

· Ограничение UУ сверху и снизу может быть реализовано с помощью кремниевых стабилитронов.

 

3.5.4.Выходные устройства СИФУ ТП. (формирователи импульсов).

Обычно в системах управления операции формирования импульсов, их усиления и гальванической развязки с системой управления осуществляются одним узлом, который, в дальнейшем, именуется “выходным устройством” (Вых.У). В других литературных источниках они именуются “формирователями импульсов” (ФИ).

Примером может служить устройство, схема которого представлена на рис 39:

Оно состоит из: выходного транзистора VT, мощность которого позволяет обеспечить все требуемые параметры управляющих импульсов; импульсного трансформатора (Тр- И), со вторичной обмотки которого снимаются импульсы, поступающие на управляющий электрод тиристора.

 

Существенное влияние на параметры включающего импульса в формирователе импульсов (ФИ) оказывает импульсный трансформатор. Одним из основных требований к нему является обеспечение минимального искажения трансформируемого импульса. С этой целью при разработке этих трансформаторов применяют специальные меры по их конструктивному исполнению. В частности, конструкцию магнитопровода и расположение витков первичной и вторичных обмоток выбирают из условий обеспечения минимальных значений потоков рассеяния и межвитковых емкостей. Например, используют кольцевые, витые из пермалоевой магнито мягкой ленты сердечники и экранированный намоточный провод. Это объясняется тем, что потоки рассеяния, характеризуемые обычно в трансформаторе индуктивностью рассеяния обмоток, влияют на передачу фронта импульса. Если индуктивности рассеяния и межвитковые емкости велики, то фронт импульса на вторичной обмотке становится более пологим. В приведенной схеме для интенсивного нарастания тока в первичной обмотке трансформатора в момент формирования импульса введена положительная обратная связь, для чего предусмотрена дополнительная вторичная обмотка трансформатора, включенная в цепь управления (2).

Для предотвращения утечки тока через выходную цепь (Э-К) транзистора и намагничивания сердечника трансформатора этими токами утечки в промежутках между рабочими импульсами, предусмотрен источник запирающей ЭДС (Eзапир.), который запирая транзистор в промежутках между рабочими импульсами, предотвращает подмагничивание сердечника, но не препятствует четкому включению транзистора VT при создании условий для прохождения iвкл.

Диод VD2 , установленный параллельно первичной обмотке трансформатора, затягивает процесс размагничивания импульсного трансформатора в промежутках между рабочими импульсами и, этим самым, защищает транзистор VT от пробоя импульсом перенапряжения, который возник бы при отсутствии VD2 .

Особенностью работы импульсных трансформаторов в ФИ является то, что они передают однополярные импульсы, т.е. работают на частном цикле кривой намагничивания магнитопровода. Это ухудшает использование стали магнитопровода и, следовательно, приводит к ухудшению массо- габаритных показателей трансформатора. Для более полного использования стали трансформатора в некоторых случаях применяют медленное перемагничивание магнитопровода током, противоположным току основных импульсов, что позволяет работать на всей кривой намагничивания.

Масса и габариты импульсного трансформатора в основном определяются амплитудой и длительностью трансформируемых импульсов. Поэтому в мощных ТП, когда имеет место групповое (параллельное и последовательное) включение вентилей, вес и габариты импульсных трансформаторов становятся чрезмерными.

Поэтому в целях уменьшения этих параметров трансформатора может быть использован принцип формирования включающих импульсов, основанный на представлении включающего импульса в виде выпрямленного напряжения высокой частоты. Сущность принципа заключается в следующем: переменное напряжение высокой частоты (20¸100 кГц) от высокочастотного генератора ВЧГ через промежуточный трансформатор Тр1 со средней точкой поступает на трансформатора Тр2 оконечного узла канала управления и далее выпрямляется диодами VD3 , VD4 .

Диоды VD1 и VD2 и транзистор VT используются для формирования длительности включающего импульса. Когда на базу транзистора VT поступает импульс управления UУ (например, с дифференцирующего устройства, задающего длительность включающего импульса), транзистор включается. В результате этого первичные полуобмотки трансформатора Тр2 и вторичные полуобмотки трансформатора Тр1 соединяются между собой через диоды VD1 , VD2 и включающий транзистор VT.

 

Напряжение, возникающее на вторичной обмотке трансформатора Тр2 выпрямляется диодами VD3 и VD4 , фильтруется конденсатором “с” и поступает на управляющий электрод тиристора. Изменяя длительность включенного состояния транзистора VT, можно регулировать ширину включающего импульса. Благодаря высокой рабочей частоте трансформаторы Тр1 и Тр2, выполняемые обычно на ферритовых магнитопроводах, имеют сравнительно небольшие массу и габариты.

Использование трансформаторов для гальванической развязки системы управления (СИФУ ) и силовой части преобразователя имеет ряд недостатков. Основным из них является наличие паразитных (емкостных и электромагнитных) связей между первичной и вторичной обмотками, затрудняющих обеспечение помехозащищенности узлов и элементов преобразователя.

Значительно более перспективными элементами, обеспечивающими гальваническую развязку в цепях преобразователя являются оптронные электронные приборы, например, оптопары (оптроны).

Оптрон- это прибор, состоящий из двух элементов: управляющего и управляемого, между которыми имеется только оптическая связь. Последняя практически не чувствительна к изменениям электромагнитного поля, что позволяет использовать оптопары для развязки цепей и не прохождения от одной цепи к другой различного рода помех.

Управляющим элементом оптопары- источником света- обычно является арсенидогаллиевый светодиод, излучающий свет при токах

(5-20)mА и напряжении (1.2-1.5)В.

В качестве управляемого элемента- приемника света- обычно используются фотодиоды, фототранзисторные и фототиристорные полупроводниковые приборы.

На рис 41 представлена одна из типовых оптоэлектронных тиристорных схем, используемых в качестве оконечного узла выходного устройства. Для согласования параметров силового тиристора VS2 и входных параметров фотодиодного оптрона “Опт” в схеме используется промежуточный тиристор VS1. Следует отметить, что в рассматриваемой схеме благодаря использованию оптрона влияние режима работы силового тиристора на электрические цепи СИФУ - незначительно.

Для управления мощными фототиристорами разработан и применяется оптический способ. Сущность этого способа заключается в использовании для включения фототиристоров мощного направленного светового потока. В качестве источника такого потока могут быть, в частности, использованы лазеры.

 








Дата добавления: 2016-06-13; просмотров: 741;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.