Водный дефицит и устойчивость к засухе

ФИЗИОЛОГИЯ СТРЕССА

 

Способность к защите от повреждающих и неблагоприятных факторов среды – обязательное свойство любого, в том числе и растительного, организма. Ответные реакции, индуцируемые в организме внешними воздействиями, часто объединяют терминам «адаптационный синдром», а также широко распространившимся термином «стресс».

Основные понятия и положения учения о стрессе были разработаны (в приложении к медицине) в 1936 г. канадцем Гансом Селье. Он полагал, что адаптивная реакция организма на различные неблагоприятные факторы (стрессоры) развивается по единому сценарию. Комплекс ответных реакций организма на стрессоры Г. Селье назвал, «генерализованным адаптационным синдромом», в котором он выделил три стадии (триады): 1) тревога и торможение большинства процессов; 2) адаптация, в течение которого организм приспосабливается к стрессору; 3) истощение, если адаптивный потенциал организма недостаточен для преодоления влияния стрессора (рис. 7.1).

Рис. 7.1. «Триада» Селье: I – фаза тревоги; II – фаза адаптации; III – фаза истощения

 

По Г. Селье, стресс – это совокупность всех неспецифических изменений, возникающих в организме под влиянием любых неблагоприятных и повреждающих факторов (стрессоров). Селье считал, что одной из отличительных характеристик живых организмов является способность адаптироваться к стрессорам путем «концентрирования усилий, или напряжения». Предложенный Г. Селье термин «стресс» быстро завоевал популярность в физиологии, поскольку позволял одним словом объединить воздействие на организм разнокачественных повреждающих факторов без количественной оценки эффекта, вызываемого каждым из стрессоров в отдельности.

При сопоставлении фаз триад у растений и животных наибольшим сомнениям подверглась идентичность первой фазы. Судя по доминирующим в ней реакциям, она не могла быть названа фазой тревоги. Ее предлагается именовать первичной стрессовой реакцией.

Стрессовыми называют те внешние факторы, которые оказывают неблагоприятное воздействие на растение. В большинстве случаев стрессовое воздействие оценивают по его влиянию на выживание растительного организма, процессы роста, ассимиляции углекислоты или элементов минерального питания. Разные виды растений устойчивы (или неустойчивы) к различным стрессовым воздействиям, т. е. характер стрессового воздействия зависит и от вида (сорта) растения,и от стрессового фактора. Приобретение устойчивости под воздействием одного из неблагоприятных факторов может вызывать повышение устойчивости растительного организма к другим стрессовым воздействиям. Это явление называется кросс-устойчивостью, или кросс-адаптацией.

В ответных реакциях растений на повреждающие факторы выделяют элементы неспецифической устойчивости (включающиеся в самых различных стрессовых ситуациях) и специфические процессы, инициируемые в растении только определенным типом стрессовых воздействий. На формирование неспецифических элементов устойчивости (синтез белков теплового шока, полиаминов) требуется гораздо меньшее время, чем для прохождения специфических адаптивных реакций, например, таких, как синтез белков-антифризов, фитохелатинов, переключение фотосинтеза на САМ-метаболизм.

Растения очень часто подвергаются стрессовым воздействиям в естественных условиях. Некоторые стрессовые факторы, например высокая или низкая температура воздуха, могут действовать в течение нескольких минут, другие оказывают на растение неблагоприятное влияние в течение нескольких дней, недель (затопление) или месяцев (дефицит или избыток некоторых минеральных элементов). Именно устойчивость к неблагоприятным условиям среды определяет характер распределения различных видов растений по климатическим зонам. Большинство же сельскохозяйственных культур вынуждены постоянно находиться в стрессовых условиях, поэтому обычно реализуется только 20 % их генетического потенциала. Для эффективного выращивания большинства растений в условиях агрокультуры важна не только их потенциальная продуктивность, но и способность противостоять и адаптироваться к различным стрессовым ситуациям. Важное значение при этом имеет акклиматизация растений, т. е. увеличение их устойчивости к стрессовому фактору путем закаливания или серии подпороговых стрессовых воздействий. Процесс акклиматизации связан с экспрессией определенных генов и появлением таких генных продуктов, активность которых повышает устойчивость растения к стрессовому воздействию.

Акклиматизацию не следует понимать как адаптацию, которая определяетсякак генетически детерминированный уровень устойчивости определенных видов растений и, как правило, является результатом процесса отбора в течение многих поколений. Адаптация – это совокупность морфологических, физиологических и химических приспособительных реакций, обеспечивающих возможность выживания определенного вида растений при действии неблагоприятных условий среды.

 

Водный дефицит и устойчивость к засухе

 

Недостаток воды в растительных тканях возникает тогда, когда расход начинает превышать поступление. Засухи бывают почвенные и атмосферные. Атмосферная засуха характеризуется низкой относительной влажностью воздуха; почвенная засуха, как правило, следует за атмосферной и возникает при длительном отсутствии дождей. Водный дефицит вызывает серьезные нарушения в первую очередь процессов роста и фотосинтеза. Во время засухи наряду с обезвоживанием происходит перегрев растений, поэтому засуха является наиболее жестким стрессовым воздействием. В зонах, где среднегодовое количество осадков позволяет получать очень высокие урожаи сельскохозяйственных культур, главным фактором, лимитирующим рост растений, является дефицит воды. Более устойчивы к засухе такие виды растений, которые способны расходовать воду более экономно или запасать ее.

У растительных организмов имеется несколько адаптивных стратегий, с помощью которых удается переживать засушливые периоды. Одни виды растений способны накапливать и удерживать воду, поддерживая, таким образом, необходимую степень гидратации своих клеток и органов (например, суккуленты, имеющие САМ-путь углеродного метаболизма). Другие приспособились функционировать в условиях дефицита воды в организме (ксерофиты, для которых, как правило, характерен С4-путь фотосинтеза). У некоторых видов растений в условиях засухи (или засоления) даже индуцируется переход фотосинтеза к САМ-пути углеродного метаболизма. К третьей группе относят растения, которые «избегают» засухи за счет организации своего жизненного цикла таким образом, чтобы вегетировать в период достаточного обеспечения водой.

Многие виды растений резко ускоряют свой рост весной, когда в почве накапливается большое количество влаги, до наступления засушливого лета. У таких растений формируется большая листовая поверхность и быстро развивается мощная корневая система, которая выбирает всю влагу из почвы, накопившуюся в зимний период. При этом растения или быстро завершают свой жизненный цикл (эфемероиды), или запасают воду для завершения репродуктивного этапа развития. Такой тип роста и развития растений называют детерминированным, поскольку он определяется периодами дождей или засухи. При резком наступлении засушливого периода растения, как правило, сбрасывают часть листьев за счет формирования у черешка отделительного слоя под влиянием фитогормона этилена. Если водный дефицит развивается постепенно, то растительному организму лучше удается приспособиться к недостатку воды, заранее замедлив темпы ростовых процессов.

Совсем другая стратегия развития у растений, произрастающих в условиях нормальной обеспеченности водой. В этом случае развиваются большие листья, а вегетация и цветение идут весь летний период. Такой тип развития растений называют недетерминированным. У растений с этим типом роста дефицит воды лимитирует не только размеры отдельных листьев, но и их количество.

Одной из самых ранних реакций растительных организмов на водный дефицит является синтез фитогормона абсцизовой кислоты, которая вызывает закрывание устьиц и таким образом снижает потерю воды при транспирации. При водном дефиците транспорт ассимилятов из листьев угнетается в меньшей степени, чем их синтез. Недостаток воды инициирует рост корней в более влажные участки почвы при условии, что в растущие кончики корней поступает необходимое количество ассимилятов. В этом случае возникает конкуренция за ассимиляты между растущими корнями и формирующимися плодами. В условиях водного дефицита активируется синтез низкомолекулярных осмотически активных веществ (моно- и олигосахаридов, аминокислот, в первую очередь пролина, бетаина, многоатомных спиртов) и различных стрессовых белков, таких, как осмотин, дегидрины, а также белков, удерживающих воду и ионы.

В состав стрессовых белков входят аквапорины – каналоформеры, которые облегчают водный транспорт через мембраны в осмотически зависимых ситуациях. У растений найдены два типа аквапорины – в плазматической и вакуолярной мембранах.

Особое значение в осморегуляции имеет пролин, содержание которого при засухе резко возрастает. К функциональным белкам, способствующим устойчивости к засухе, относятся и многочисленные гидролазы, в том числе ферменты протеолиза, ингибиторы протеаз, ферменты биосинтеза осмотиков. При водном стрессе синтезируются также регуляторные белки, которые участвуют в экспрессии генов и сигнальной трансдукции. Пути приспособления растений к засухе приведены на рис. 7.2.

 

 
Рис. 7.2. Пути приспособления растений к засухе

 








Дата добавления: 2016-06-13; просмотров: 1704;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.