Узкополосный сигнал

Узкополосные и широкополосные сигналы

Узкополосный сигнал

Сигнал называется узкополосным (УПС), если ширина его спектра значительно меньше средней частоты (рис.1.1):

Рис. 1.1

Типичными представителями УПС являются модулированные радиосигналы. К УПС можно также отнести несколько радиосигналов со своими несущими, занимающие вместе достаточно узкую полосу частот.

В первом приближении для анализа прохождения УПС через радиоэлектронные цепи такой сигнал можно представить гармоническим на средней частоте. Более лучшее приближение дает представление УПС в виде квазигармонического колебания, у которого медленно (по сравнению с ) меняются мгновенные амплитуда и частота. В этом случае полагается, что за достаточно короткое время (меньшее, чем изменения амплитуды и частоты), сигнал можно считать гармоническим.

В общем случае УПС можно представить в виде

где и -медленно меняющиеся функции времени.

Для классических АМ и ЧМ колебаний средняя частота совпадает с несущей частотой сигнала. Для однозначного и наиболее оптимального выбора применяется аппарат преобразования Гильберта, согласно которому для заданного УПС находится сопряженная функция ,определяемая как

при этом

Огибающая, определённая таким образом, совпадает с сигналом в моменты времени, где ,т.е. имеют общие касательные, причем в точках касания функция близка к максимумам (Рис.1.2):

Рис. 1.2

Для сигнала вида сопряженная по Гильберту функция равна а для .

Исходя из этих соотношений для гармонического сигнала огибающая и частота равны соответственно:

как и следовало ожидать. Если же выбрать произвольным образом среднюю частоту, то даже для гармонического сигнала можно получить некую достаточно сложную огибающую, не соответствующую действительности.

Рассмотрим в качестве примера УПС, состоящий из суммы гармонических составляющих:

Для такого сигнала

откуда

После преобразований можно получить следующее выражение для мгновенной частоты

Для двухчастотного сигнала (N=2) имеем

Таким образом, сумму двух близко расположенных по частоте ( ) сигналов можно записать в виде квазигармонического колебания:

Рис.1.3 иллюстрирует примерный вид сигнала, состоящего из двух гармонических сигналов с равными амплитудами ( = = ).

Рис. 1.3

Ниже на рис. 1.4 и рис.1.5 приведены нормированные графики одного периода огибающей и мгновенной частоты: бигармонического сигнала для , 0,5 и 0,1.

Рис.1.4

При уменьшении амплитуды одного из сигналов мгновенная частота ( рис.5 ) непрерывно меняется и при малом k средняя частота близка к частоте большего сигнала. Из графиков рис. 3, рис. 4, рис. 5 видно, что при взаимодействии двух сигналов с равными амплитудами огибающая амплитуд меняется от удвоенной амплитуды каждого до нуля. Причем в нуле огибающей фаза скачком меняется на ,что формально означает переход через бесконечность (разрыв) мгновенной частоты, а в остальное время

При уменьшении амплитуды одного из сигналов мгновенная частота (рис.1.5 ) непрерывно меняется и при малом k средняя частота близка к частоте большего сигнала.

Рис. 1.5

При малом k огибающую можно представить в приближенном виде

откуда видно, что огибающая в этом случае линейно зависит от амплитуды малого сигнала при постоянной амплитуде большого. Если малый сигнал в свою очередь будет квазигармоническим

т.е.

то

Таким образом результирующая огибающая содержит линейную информацию об изменении амплитуды и фазы малого сигнала, что дает возможность в приемнике выделить эту информацию без нелинейных искажений.

2. Широкополосный сигнал








Дата добавления: 2016-06-02; просмотров: 3959;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.