Оценка вероятности или доли элементов генеральной совокупности, обладающих определенным признаком.

Выборочная доля (или оценка вероятности) определяется как отношение числа элементов выборки с изучаемым признаком к её общему объёму :

. (4.12)

Выборочная дисперсия доли определяется величиной

. (4.13)

Величина предельной ошибки для доли равна:

· повторная выборка

, (4.14)

· бесповторная выборка

. (4.15)

Минимальный объём выборки, который обеспечивает требуемую точность, находят по формуле

. (4.16)

 

Пример 4.4. Имеется совокупность 10 000 деталей, произведенных на двух предприятиях. Для определения доли деталей, произведенных на первом предприятии, осуществили случайный бесповторный отбор 100 деталей. В выборке оказалось 20 деталей, произведенных на первом предприятии. Определить: 1) двусторонний доверительный интервал для доли, если уровень значимости ; 2) требуемый объем выборки, если предельная ошибка . Решение. 1) Выборочную долю и дисперсию определяем по (4.12) и (4.13): ; . Предельную ошибку находим по (4.15) для . Как видно для условий примера практически нет разницы между повторным и бесповторным отбором. Левая и правая границы равны: . Можно утверждать, что с вероятностью 0,95 выполняется . 2) Если и , то получим (9.16): ; то есть .







Дата добавления: 2016-06-02; просмотров: 583;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.