Понятие о софизмах и логических парадоксах
В отличие от непроизвольной логической ошибки — паралогизма, являющейся следствием невысокой логической культуры, софизм — это преднамеренное, но тщательно замаскированное нарушение требований логики.
Вот примеры довольно простых древних софизмов. “Вор не желает приобрести ничего дурного; приобретение хорошего есть дело хорошее; следовательно, вор желает хорошего”. “Лекарство, принимаемое больным, есть добро; чем больше делать добра, тем лучше; значит, лекарство нужно принимать в больших дозах”.
Софизмы древних нередко использовались с намерением ввести в заблуждение. Но они имели и другую, гораздо более интересную сторону. Очень часто софизмы ставят в неявной форме проблему доказательства. Сформулированные в тот период, когда науки логики еще не было, древние софизмы прямо ставили вопрос о необходимости ее построения. Именно с софизмов началось осмысление и изучение доказательства и опровержения. И в этом плане софизмы непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.
Математические софизмы собраны в целом ряде книг. Так, С. Коваль описывает математические софизмы: “каждая окружность имеет два центра”; “каждый треугольник — равнобедренный”.
Я.И. Перельман приводит “алгебраические комедии”: 2x2=5; 2=3.
Софизмы использовались и теперь продолжают использоваться для тонкого, завуалированного обмана. В этом случае они выступают в роли особого приема интеллектуального мошенничества, попытки выдать ложь за истину и тем самым ввести в заблуждение.
Например, 2x2=5. Требуется найти ошибку в следующих рассуждениях. Имеем числовое тождество: 4:4=5:5. Вынесем за скобку в каждой части этого тождества общий множитель. Получим — 4(1:1)=5(1:1). Числа в скобках равны. Поэтому 4=5, или 2x2=5. [1] Но если записать выражение через дробь, то все встанет на свои места.
Парадокс — это рассуждение, доказывающее как истинность, так и ложность некоторого суждения, иными словами, доказывающее как это суждение, так и его отрицание.
Парадоксальны в широком смысле афоризмы, подобные таким: “Люди жестоки, но человек добр” или “Признайте, что все равны, — и тут же появятся великие”, и вообще любые мнения и суждения, отклоняющиеся от традиции и противостоящие общеизвестному, “ортодоксальному”.
Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс “Лжец”. Имеются различные варианты этого парадокса, многие из которых только по видимости парадоксальны.
В простейшем варианте “Лжеца” человек произносит всего одну фразу: “Я лгу”. Или говорит: “Высказывание, которое я сейчас произношу, является ложным”. Традиционная лаконичная формулировка этого парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду.
В древности “Лжец” рассматривался как хороший пример двусмысленного выражения. В средние века “Лжец” был отнесен к “неразрешимым предложениям”. Теперь он нередко именуется “королем логических парадоксов”.
ЛИТЕРАТУРА
1. Гетманова А.Д. Учебник по логике - М.: Владос, 1994.
2. Ивин А.А. Искусство правильно мыслить - М.: Просвещение, 1990.
3. Коваль С. От развлечения к знаниям /Пер. О. Унгурян - Варшава: Начно-техническое изд-во, 1972.
4.Перельман Я.И. Занимательная алгебра - М.: Наука, 1976. Реф из Интернета. .
Дата добавления: 2016-05-05; просмотров: 910;