Применение методов биотехнологии в производстве энергии.
Неиссякаемым источником энергии является солнце. Каждый год на поверхность Земли поступает 3•1024 Дж энергии, в то время как запасы нефти, природного газа, угля, урана по оценкам эквивалентны 2,5•1022 Дж. Т.е. менее чем за неделю Земля получает от Солнца такое же количество энергии, какое содержится во всех невозобновляемых ее запасах.
Если бы только 0,1% поверхности Земли занимали накопители, использующие солнечную энергию с коэффициентом полезного действия около 10%, то были бы удовлетворены все текущие потребности в энергии в мире за год (3•1020 Дж).
Однако у солнечной энергии есть два недостатка: она поступает неравномерно и диффузно. Поэтому необходимо, во-первых, разработать какие-то системы накопления, так чтобы энергия была доступна по потребности, а во-вторых, создать накопители большой площади. Оба этих фактора накладывают определенные ограничения на использование систем на основе солнечной энергии.
Обе эти проблемы решает производство биомассы путем фотосинтеза:
Во-первых, в роли накопителей могут выступать растения, и во-вторых, получаемый продукт стабилен и может храниться.
Впрочем, при получении и использовании биомассы для выработки энергии возникают свои проблемы, которые, однако, уравновешиваются преимуществами: ее можно получать во всем мире, она возобновляется в согласии с окружающей средой. Кроме этого, солнечная энергия запасается в биомассе в форме органических веществ, поэтому ее можно хранить и перемещать во времени и пространстве.
К недостаткам относится малая эффективность (обычно менее 1% и редко более 2%) использования солнечной энергии при фотосинтезе; при образовании продукции растениеводства диффузный, а часто и сезонный характер продукции и высокое весовое содержание влаги. По этим причинам для получения высококачественного, богатого энергией сырья необходимо осуществить его сбор, перевозку, удаление воды, концентрирование или же химическую или биологическую переработку и упаковку. Если же задачей является превращение биомассы в ценные виды топлива, то думать приходится не только об удалении воды и увеличении удельного содержания энергии, но и о том, как получить продукт, совместимый с технологией, для которой он предназначен.
Ранее основным путем использования растительного сырья в качестве топлива во всем мире было прямое сжигание главным образом древесины и в меньших масштабах – остатков урожая и навоза. В настоящее время на разных стадиях разработки находится ряд систем термической модификации такого сырья. Среди них – установки на основе пиролиза, газификации и гидрогенизации.
Для этой цели применяют главным образом сахарный тростник, кукурузу, древесину, навоз, бытовой мусор, а также отходы сельского хозяйства и промышленности.
Основным поставщиком биомассы, идущей на топливо, служит сельское и лесное хозяйство. Оценивая нынешние возможности, следует исходить из наличных земельных площадей, урожайности современных культур, продуцирующих сахар и крахмал, и числа работников, занятых в сельском хозяйстве.
Ежегодный прирост биомассы во всем мире составляет около 2•1011 т. Из них приблизительно 1,2•1011 т составляет древесина (в пересчете на сухое вещество). Примерно 60% вырубаемой древесины используется как топливо.
Древесина, используемая в качестве биотоплива, обладает рядом достоинств: выход продукции в пересчете на гектар очень высок; из древесины получают значительно больше биомассы, чем из любого другого источника; разведение лесов требует гораздо меньших вложений, чем выращивание других культур. К числу недостатков нужно отнести длительность роста до зрелости, а также тот факт, что главный компонент древесины, лигноцеллюлоза, очень сложна для переработки. В ближайшем будущем наиболее удобным и доступным источником сырья будут отходы деревообрабатывающей промышленности, но впоследствии все возрастающее значение будет приобретать «выращивание» топлива.
Поскольку основные затраты связаны с очисткой земли и посадкой, основное внимание уделяется сегодня выращиванию твердодревесного быстрорастущего порослевого леса.
Большой биомассой отличаются пресноводные и морские водоросли, но чрезвычайно большое содержание воды в этих растениях и сложность сушки на солнце препятствуют использованию их как топлива путем прямого сжигания.
Наиболее подходящей технологией переработки водных растений и сырых отходов земледелия в топливо, корма и удобрения является анаэробная ферментация. Эти растения просто процветают в сточных водах. Они успешно очищают воду и хорошо при этом растут. Таким образом, они могут играть двойную роль: улучшать состояние окружающей среды и служить важным источником энергии. В ряде стран из водных растений получают биогаз. Их стали использовать для этой цели, поскольку растения исключительно быстро растут, причем на поверхности воды, и их легко собирать. Можно использовать и водоросли, растущие в прудах, в которых перерабатываются сточные воды, содержащие органические вещества. Такая технология особенно пригодна для стран, где много солнца, и к тому же нередко возникают проблемы переработки жидких отходов.
Многие жидкие и полутвердые отходы – идеальная среда для роста фотосинтезирующих водорослей и бактерий. При хороших условиях они быстро наращивают биомассу и осуществляют эффективное превращение солнечной энергии (3,5%); выход продукции составляет 50-80 т с гектара в год. Собранные водоросли можно прямо скармливать животным, получать из них метан или сжигать для получения электроэнергии. При этом одновременно происходит переработка отходов и очистка воды. По существующим оценкам затраты на такие системы в условиях Калифорнии составляют около 50% от затрат на обычные системы переработки сточных вод. Главная хозяйственная проблема здесь – затраты на сбор продукции. Ее можно решить, используя иные виды водорослей, которые легче собирать, и новые технические приемы сбора.
Дата добавления: 2016-06-02; просмотров: 1231;