Регулирование частоты вращения ДПТ.
а) | б) | |
Согласно (6.2), | регулирование частоты вращения двигателей | постоянного тока можно |
осуществлять путем изменения потока Ф, введения дополнительного сопротивления в цепь якоря и изменения напряжения сети . В двигателях параллельного возбуждения наиболее просто осуществляется регулирование изменением потока, реализуемого с помощью реостата в
цепи возбуждения. При увеличении сопротивления поток Ф уменьшается и частота вращения растет.
На рис. 4а представлены механические характеристики двигателя параллельного возбуждения при трех значениях потока. Таким способом регулируют частоту вращения в
пределах , . Верхний уровень частот ограничивается условиями коммутации. Кроме того, при глубоком уменьшении потока возбуждения усиливается размагничивающее действие реакции якоря, жесткость механической характеристики растет, и падающая характеристика при номинальном потоке может стать возрастающей при ослабленном потоке, что приведет к нарушению устойчивой работы двигателя.
Регулирование частоты вращения двигателя путем введения в цепь якоря дополнительного
сопротивления позволяет изменять частоту вращения вниз от номинальной в широких пределах (рис. 4 б). Но этот способ не экономичен. Полезная мощность двигателя при постоянном моменте пропорциональна частоте вращения (без учета потерь в якоре):
,
а потребляемая из сети мощность от частоты вращения не зависит,
.
Поэтому КПД двигателя пропорционален частоте вращения якоря,
Кроме того, при введении дополнительного сопротивления жесткость механической
характеристики двигателя снижается, что может привести к ухудшению работы приводного механизма.
Более совершенным способом регулирования частоты вращения вниз является регулирование путем изменения подводимого к двигателю напряжения. На рис. 5 представлены механические характеристики двигателя параллельного возбуждения для трех значений напряжений. Жесткость механических характеристик практически не меняется, поэтому таким способом можно регулировать частоту вращения от номинальной до нуля.
В качестве источников регулируемого напряжения используются генератор постоянного тока (рис. 2, а) либо полупроводниковый выпрямитель (рис. 2,б). Схема с полупроводниковым выпрямителем обладает более высоким быстродействием по сравнению со схемой генератор-двигатель, но уступает по перегрузочной способности. Кроме того, работа полупроводникового преобразователя ухудшает качество электрической энергии сети переменного тока из-за генерации высших гармоник напряжения и тока.
Рассмотренные способы регулирования частоты вращения двигателей параллельного возбуждения применяются и в двигателях смешанного возбуждения.
Регулирование частоты вращения двигателей последовательного возбуждения осуществляется
путем изменения тока в последовательной обмотке или напряжения якоря Uс помощью шунтирующих реостатов.
При шунтировании обмотки возбуждения ток уменьшается и частота вращения якоря растет, а при шунтировании якоря напряжение якоря уменьшается, поэтому частота вращения падает. Регулирование частоты вращения вверх осуществляется практически при постоянном КПД
.
Верхний уровень частоты вращения ограничивается условиями коммутации.
Регулирование частоты вращения вниз может осуществляться вплоть до нуля, однако КПД этого способа снижается пропорционально напряжению якоря и частоте вращения:
,
где - частота вращения якоря при .
Таким образом, этот способ регулирования так же, как и реостатный способ регулирования частоты вращения двигателя с параллельным возбуждением, является неэкономичным. Он используется лишь в случае двигателей малой мощности.
Дата добавления: 2016-05-05; просмотров: 1571;