Слайсы, которые стали чипами

 

О микросхемах

 

 

Ему предстояло увидеть наяву тот заветный сундук, который он двадцать раз представлял в своих грезах.

А. Дюма . Три мушкетера

 

 

Самые первые микросхемы были совсем не такими, как сейчас. Они изготавливались гибридным способом: на изолирующую подложку напылялись алюминиевые проводники, приклеивались маленькие кристаллики отдельных транзисторов и диодов, малогабаритные резисторы и конденсаторы, и затем все это соединялось в нужную схему тонюсенькими золотыми проволочками – вручную, точечной сваркой под микроскопом. Можно себе представить, какова была цена таких устройств, которые назывались гибридными микросхемами. К гибридным микросхемам относятся и некоторые современные типы – к примеру, оптоэлектронные реле – но, конечно, сейчас выводы отдельных деталей уже вручную не приваривают.

Ведущий специалист и один из основателей компании Fairchild Semiconductor Роберт Нойс позднее признавался, что ему стало жалко работников, терявших зрение на подобных операциях, и в 1959 году он выдвинул идею микросхемы – «слайса», или «чипа» (slice – ломтик, chip – щепка, осколок), где все соединения наносятся на кристалл прямо в процессе производства. Несколько ранее аналогичную идею выдвинул сотрудник Texas Instruments Джек Килби, однако опоздавший Нойс, химик по образованию, разработал детальную технологию изготовления (это была так называемая планарная технология с алюминиевыми межсоединениями, которая часто используется и по сей день). Спор о приоритете между Килби и Нойсом продолжался в течение десяти лет, и в конце концов победила дружба – было установлено считать Нойса и Килби изобретателями микросхемы совместно. В 2000 году Килби (Нойс скончался в 1990‑м) получил за изобретение микросхемы Нобелевскую премию (одновременно с ним, но за достижения в области оптоэлектроники, ее получил и российский физик Жорес Алферов).

* * *

 

Fairchild Semiconductor

Компания Fairchild Semiconductor в области полупроводниковых технологий стала примерно тем, чем фирма «Маркони» в области радио или фирма Xerox в области размножения документов. Началось все еще с ее рождением: восемь инженеров, уволившихся в 1957 году из основанной изобретателем транзистора Уильямом Шокли компании Shockley Semiconductor Labs , обратились к начинающему финансисту Артуру Року – единственному, кому их идеи показались интересными. Рок нашел компанию из холдинга Шермана Файрчайлда, которая согласилась инвестировать основную часть из требуемых 1,5 миллиона долларов, и с этого момента принято отсчитывать появление нового способа финансирования инновационных проектов – венчурных (т. е. «рисковых») вложений, что в дальнейшем позволило родиться на свет множеству компаний, названия которых теперь у всех на слуху.

Следующим достижением Fairchild стало изобретение микросхем Робертом Нойсом, и первые образцы многих используемых и поныне их разновидностей были созданы именно тогда (например, в одном из первых суперкомпьютеров на интегральных схемах, знаменитом ILLIAC IV, были установлены микросхемы памяти производства Fairchild ). А в 1963 году отдел линейных интегральных схем в Fairchild возглавил молодой специалист по имени Роберт Видлар, который стал «отцом» интегральных операционных усилителей, основав широко распространенные и поныне серии, начинающиеся с букв μ и LM (мы о нем уже упоминали в главе 9 в связи с интегральными стабилизаторами питания). Логические КМОП‑микросхемы (см. главу 15 ) изобрел в 1963 году также сотрудник Fairchild Фрэнк Вонлас, получивший на них патент № 3 356 858.

 

Intel и AMD

В 1965 году знаменитый Гордон Мур, тогда – один из руководителей Fairchild , входивший вместе с Нойсом в восьмерку основателей, сформулировал свой «закон Мура» о том, что производительность и число транзисторов в микросхемах удваиваются каждые 1,5 года – этот закон фактически соблюдается и по сей день! В 1968 году Нойс с Муром увольняются из Fairchild и основывают фирму, название которой теперь знает каждый школьник: Intel . Инвестором новой компании стал все тот же Артур Рок. А другой работник Fairchild , Джереми Сандерс, в следующем, 1969 году основывает фирму почти столь же известную, как и Intel , – ее «заклятого друга» AMD .

 

 

 

Рис. 11.1. Изобретатели микросхемы Роберт Нойс (Robert Noyce), 1927–1990 (слева) и Джек Килби (Jack St. Clair Kilby), 1923–2005

* * *

Что же дало использование интегральных микросхем, кроме очевидных преимуществ типа миниатюризации схем и сокращения количества операций при проектировании и изготовлении электронных устройств?

Рассмотрим прежде всего экономический аспект. Первым производителям чипов это было еще не очевидно, но экономика производства микросхем отличается от экономики других производств. Одним из первых, кто понял, как именно нужно торговать микросхемами, был уже упомянутый Джереми Сандерс (тогда – сотрудник Fairchild , впоследствии – руководитель компании AMD на протяжении более трех десятилетий).

Пояснить разницу можно на следующем примере. Если вы закажете архитектору проект загородного дома, то стоимость этого проекта будет сравнима со стоимостью самого дома. Даже если вы по этому проекту построите сто домов, то вы не так уж сильно выгадаете на стоимости каждого – стоимость проекта поделится на сто, но выгода ваша будет измеряться процентами, потому что построить дом дешевле, чем стоят материалы и оплата труда рабочих, нельзя, а они‑то и составляют значительную часть стоимости строительства. В производстве же микросхем все иначе: цена материалов, из которых они изготовлены, в пересчете на каждый «чип» настолько мала, что она составляет едва ли единицы процентов от стоимости конечного изделия. Поэтому основная часть себестоимости чипа складывается из стоимости его проектирования и стоимости самого производства, на котором они изготавливаются, – фабрика для выпуска полупроводниковых компонентов может обойтись в сумму порядка 2–4 миллиардов долларов. Ясно, что в этой ситуации определяющим фактором стоимости микросхемы будет их количество – обычно, если вы заказываете меньше миллиона экземпляров, то с вами даже разговаривать не станут, а если вы будете продолжать настаивать, то один экземпляр обойдется вам во столько же, сколько и весь миллион. Именно массовость производства приводит к тому, что сложнейшие схемы, которые в дискретном виде занимали бы целые шкафы и стоили бы десятки и сотни тысяч долларов, продаются дешевле томика технической документации к ним.

Вторая особенность экономики производства микросхем – то, что их цена мало зависит от сложности. Микросхема простого операционного усилителя содержит несколько десятков транзисторов, микросхема микроконтроллера – несколько десятков или сотен тысяч, однако их стоимости по меньшей мере сравнимы. Эта особенность тоже не имеет аналогов в дискретном мире – с увеличением сложности обычной схемы ее цена растет пропорционально количеству использованных деталей. Единственный фактор, который фактически ведет к увеличению себестоимости сложных микросхем по сравнению с более простыми (кроме стоимости проектирования), – это процент выхода годных изделий, который может снижаться при увеличении сложности. Если бы не это, то стоимость Intel Core i7 не намного бы превышала стоимость того же операционного усилителя. Однако в Core i7 , извините, несколько сотен миллионов транзисторов! Это обстоятельство позволило проектировщикам без увеличения стоимости и габаритов реализовать в микросхемах такие функции, которые в дискретном виде было бы реализовать просто невозможно или крайне дорого.

Кстати, выход годных – одна из причин того, что кристаллы микросхем такие маленькие. В некоторых случаях разработчики даже рады были бы увеличить размеры, но тогда резко снижается и выход. Типичный пример такого случая – борьба производителей цифровых фотоаппаратов за увеличение размера светочувствительной матрицы. Матрицы размером с пленочный кадр (24x36 мм) и на момент первого издания этой книги, и сейчас имеют только лучшие (и самые дорогие) модели профессиональных фотокамер.

Но, конечно, тенденция к миниатюризации имеет и другую причину: чем меньше технологические нормы, тем меньше потребляет микросхема и тем быстрее она работает. Простые логические микросхемы КМОП серии 4000В (см. главу 15 ) выпускали в процессе с технологическими нормами 4 мкм, микропроцессор i8086 – по технологии 3 мкм, и работали они на частотах в единицы, в лучшем случае – десятки мегагерц. Процессор Pentium 4 с ядром Willamette (нормы 0,18 мкм) имел тепловыделение до 72 Вт, a Pentium 4 с ядром Northwood (нормы 0,13 мкм) – уже 41 Вт. В настоящее время большая часть микропроцессоров выпускается по нормам 0,032‑0,045 мкм, освоен порог в 0,022 мкм (22 нм), проектируются процессы 14 и даже 10 нм. Вспомните, что диаметр единичного атома имеет порядок 0,2–0,3 нм, так что по ширине дорожки на кристалле, изготовленном с такими нормами, укладывается всего полсотни атомов кремния!

Еще одна особенность микросхем – надежность. Дискретный аналог какого‑нибудь устройства вроде аналого‑цифрового преобразователя содержал бы столько паек, что какая‑нибудь в конце концов обязательно оторвалась. Между тем, если вы эксплуатируете микросхему в штатном режиме, то вероятность ее выхода из строя измеряется миллионными долями единицы. Это настолько редкое явление, что его можно практически не учитывать на практике, – если у вас сломался какой‑то прибор, ищите причину в контактах переключателей, в пайках внешних выводов, в заделке проводов в разъемах – но про возможность выхода из строя микросхемы забудьте. Разумеется, это, повторяю, относится к случаю эксплуатации в штатном режиме – если вы подали на микрофонный вход звуковой карты напряжение 220 В, конечно, в первую очередь пострадает именно микросхема. Но сами по себе они практически не выходят из строя никогда.

 

 








Дата добавления: 2016-05-11; просмотров: 1284;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.