Теория относительности
Теория относительности стала результатом обобщения и синтеза классической механики Ньютона и электродинамики Максвелла, между которыми с середины XIX в. возникли серьезные противоречия. Так, в механике господствовал классический принцип относительности Галилея, утверждавший равноправность всех инерциаль-ных систем отсчета, а в электродинамике — концепция эфира, или ненаблюдаемой среды, заполняющей мировое пространство и являющейся абсолютной системой координат. Иными словами, в электродинамике выделялась одна система координат, имевшая предпочтение перед всеми другими системами.
Ряд ученых попытались решить данное противоречие. Среди них был нидерландский физик X. Лоренц, который вывел математические уравнения, называемые сегодня преобразованиями Лоренца, для вычисления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на этих телах, в зависимости от скорости движения.
А в 1905 г. в журнале «Анналы физики» появилась статья неизвестного тогда еще А. Эйнштейна «К электродинамике движущихся тел». В ней и были сформулированы основы специальной теории относительности.
Специальная теория относительности.Около десяти лет размышлял Эйнштейн над проблемой влияния скорости движения тел на электромагнитные явления. В результате он пришел к выводу о невозможности существования ньютоновского абсолютного пространства и времени, так как это противоречит принципу относительности Галилея. Таким образом, Эйнштейн смог увидеть, что за рассуждениями Галилея скрывается принципиально иное представление о пространстве и времени. Сам Эйнштейн считал, что принцип относительности является квинтэссенцией классической механики, и поэтому должен быть сохранен. От концепции абсолютного пространства и времени, как не имеющих реального физического содержания, следовало отказаться.
Специальная теория относительности (СТО) базируется на двух постулатах. Первый постулат СТО — расширенный принцип относительности. Он уравнивал между собой не только инерциальные
системы, движущиеся равномерно и прямолинейно друг относительно друга, но и распространил действие принципа на законы электродинамики.
Классический принцип относительности Галилея очень прост. Он всего лишь заявляет, что между покоем и движением, если оно прямолинейно и равномерно, нет никакой принципиальной разницы. Разница лишь в точке зрения. Для путешественника, плывущего на корабле, книга, лежащая у него в каюте на столе, покоится, но для человека на берегу эта книга плывет вместе с кораблем. В данном примере бессмысленно спрашивать, движется или покоится книга. Такой спор был бы пустой тратой времени. Наблюдателям нужно лишь согласовать свои позиции и признать, что книга покоится относительно корабля и движется относительно берега вместе с кораблем.
Таким образом, слово «относительность» в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в утверждение о том, что движение или покой — всегда движение или покой относительно чего-то, что служит нам системой отсчета. Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета.
Эйнштейн развил классический принцип относительности и пришел к выводу, что этот принцип является всеобщим и действует не только в механике, но и в электродинамике.
Второй постулат СТО Эйнштейн позаимствовал из электродинамики — это принцип постоянства скорости света, которая в вакууме примерно равна 300 000 км/с. Второй постулат говорит о постоянстве скорости света во всех инерциальных системах отсчета. Он связан с принципом относительности, в соответствии с которым если и существует максимальная скорость, то она должна быть одинаковой во всех инерциальных системах отсчета.
Но почему так важна эта скорость, что суждение о ней приравнивается к принципу относительности? Дело в том, что скорость света — самая большая из всех скоростей в природе, предельная скорость физических взаимодействий, одна из немногих фундаментальных физических констант нашего мира.
Движение света принципиально отличается от движения всех других тел, скорость которых меньше скорости света. Скорости этих тел всегда складываются с другими скоростями. В этом смысле скорости относительны, их величина зависит от точки зрения (как в приведенном выше примере). Скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета.
Скорость света — это верхний предел для скорости перемещения любых тел в природе, для скорости распространения любых волн и сигналов. Она максимальна — это абсолютный рекорд скорости. Она является предельной скоростью любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире. Если бы это было не так, нарушился бы фундаментальный закон причинности, утверждающий, что причина всегда предшествует следствию. Тогда разрушилась бы логическая связь событий во Вселенной, в мире воцарился абсолютный хаос и случайность.
Разумеется, все сказанное нами о скорости света, противоречит тому, что мы видим в окружающем нас мире. Более того, одновременное действие этих двух постулатов кажется невозможным. Чтобы решить данный парадокс, Эйнштейн обращается к анализу проблемы одновременности, которая и составляет суть теории относительности.
Классическая физика решала эту проблему очень просто в рамках концепции абсолютного времени, в соответствии с которой любые события во всех точках Вселенной совершались в рамках одной системы отсчета (абсолютного времени). Поэтому одновременность событий считалась реально существующим фактом.
Чтобы доказать существование одновременности, нужно иметь в двух точках пространства, в которых находятся интересующие нас объекты, одинаково устроенные, синхронно идущие часы. Синхронизировать эти часы можно, воспользовавшись световыми сигналами, которые будут направляться из одной точки в другую, а потом возвращаться обратно. Если часы при этом будут показывать одинаковое время, значит, события в данных точках протекают одновременно. Если бы свет распространялся мгновенно, проблемы бы не существовало. Но так как свет обладает конечной скоростью, то наши сигналы в разных точках покажут разные результаты. Таким образом, события, одновременные для одного наблюдателя, окажутся неодновременными для другого. Следовательно, понятие одновременности всегда относительно.
Из нового понимания одновременности вытекают важнейшие выводы специальной теории относительности, которые известны под названием релятивистских эффектов. Относительными становятся не только скорости и траектории тел, как в классической механике, но и пространственно-временные характеристики тел, традиционно считавшиеся неизменными, — линейные размеры, масса и время протекания процессов. Оказывается, эти свойства зависят от скорости движения тел. Правда, изменения линейных размеров, массы и времени протекания процессов становятся заметными, если измерять их из другой системы, движущейся относительно первой системы с иной скоростью. При этом скорость движения наблюдаемой системы должна быть очень большой, сравнимой со скоро-
стью света. Таким образом, релятивистские эффекты — это изменения пространственно-временных характеристик тел, заметные на больших скоростях, сравнимых со скоростью света. Их три:
1) сокращение линейных размеров тела в направлении его движения. Чем ближе скорость космического корабля, пролетающего мимо неподвижного наблюдателя, к скорости света, тем меньше будут его размеры для наблюдателя. Если бы корабль смог двигаться со скоростью света, то его наблюдаемая длина оказалась бы равной нулю, что невозможно;
2) увеличение массы быстродвижущихся тел. Масса движущегося тела с точки зрения неподвижного наблюдателя оказывается больше массы покоя того же тела. Чем ближе скорость тела к скорости света, тем больше возрастает его масса. Если бы тело смогло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Поэтому никакое тело с массой, отличной от нуля, нельзя разогнать до скорости света, так как это потребовало бы бесконечной энергии. В связи с этим появилась самая известная формула теории относительности, связывающая массу и энергию. Эйнштейну удалось доказать, что масса тела есть мера содержащейся в нем энергии: Е = тс2;
3) замедление времени в быстродвижущихся телах. Так, в быстро летящем космическом корабле время течет медленнее, чем для неподвижного наблюдателя. Эффект замедления времени на космическом корабле сказался бы не только на часах, но на всех процессах, протекающих в этом корабле, в том числе и на биологических ритмах его экипажа. Чтобы проиллюстрировать эту ситуацию был предложен так называемый парадокс близнецов. Если бы из двух близнецов один остался на Земле, а другой улетел к звездам, то космонавт с точки зрения земного наблюдателя старился бы медленнее, чем его брат-близнец. Поэтому после возвращения домой космонавт обнаружил бы, что брат значительно старше его. Интересно, что чем дальше совершается полет и чем ближе скорость корабля к скорости света, тем большей будет разница в возрасте между близнецами. Она может измеряться даже сотнями и тысячами лет, в результате чего экипаж корабля сразу перенесется в близкое или более отдаленное будущее, минуя промежуточное время, поскольку ракета вместе с экипажем выпала из хода развития на Земле.
Таким образом, специальная теория относительности утверждает, что пространство и время нельзя рассматривать изолированно друг от друга. На основании этих выводов в 1907 г. немецкий математик Г. Минковский высказал предположение, что три пространственных и одна временная размерность любых материальных тел тесно связаны между собой. Все события во Вселенной происходят в едином четырехмерном пространстве-времени.
Обшая теория относительности. В рамках общей теории относительности, которая создавалась в течение десяти лет, с 1906 по 1916 г., А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто называют теорией тяготения. В ней были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Общая теория относительности основывается уже не на двух, а на трех постулатах.
Первый постулат общей теории относительности — расширенный принцип относительности, который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл только по отношению к фактору, его определяющему.
Второй постулат — принцип постоянства скорости света — остается неизменным.
Третий постулат — принцип эквивалентности инертной и гравитационной масс. Этот факт был известен еще в классической механике. Теоретический анализ, который был сделан ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли.
Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в гравитационных полях.
Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась. Эйнштейн использовал геометрию Б. Римана, которая верна для поверхности сферы, и сделал вывод о кривизне пространства-времени.
Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины и будем считать, что это модель пространства. Расположим на этом листе большие и маленькие шарики — модели звезд и планет. Шарик будет прогибать лист резины тем больше, чем больше его масса. Это наглядно демонстрирует зависимость кривизны пространства-времени от массы тела, подтверждает правоту Римана.
Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала, отправленного на такое же расстояние, Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г., в качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.
Одно из самых фантастических предсказаний общей теории относительности — полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее тяготение. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает.
Существование черных дыр было предсказано общей теорией относительности. Если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца равен 700 000 км), оно превратилось бы в черную дыру. Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы. С нашим Солнцем такого не случится, а вот звезды, превосходящие Солнце по массе в 3 раза, в конце своей эволюции превращаются в такие объекты.
Дата добавления: 2016-04-22; просмотров: 763;