Диапазон выходных значений
Диапазон выходных значений (FSO) - алгебраическая разность между электрическими выходными сигналами, измеренными при максимальном и минимальном внешнем воздействии. В эту величину должны входить все возможные отклонения от идеальной передаточной функции.
Точность
Точность - очень важная характеристика любого датчика. Правда, когда говорят о точности датчика, чаще всего подразумевают его неточность или погрешность измерений. Под погрешностью измерений, как правило, понимают величину максимального расхождения между показаниями реального и идеального датчиков. Считается, что измеренное значение соответствует реальному с определенной степенью достоверности.
Погрешность датчика можно также представить в виде разности между значением, вычисленным по выходному сигналу датчика, и реальным значением поданного входного сигнала. Например, рассмотрим линейный датчик перемещений. В идеальном случае, если его чувствительность b равна 1 мВ/мм, при смещении объекта на 1 мм напряжение на выходе должно измениться на 1 мВ. Однако на практике при перемещении объекта на расстояние S = 10 мм выходное напряжение изменилось на 10,5 мВ, Т.е. S = 10,5 мВ. Преобразовав это значение при помощи инверсной передаточной функции, получим, что при таком напряжении перемещение объекта должно быть равным Sx = S/b = 10,5 мм, т.е. на 0,5 мм больше действительного. Вот эти 0,5 мм и являются погрешностью измерений. Следовательно, можно утверждать, что в пределах диапазона 10 мм абсолютная погрешность измерений данного датчика составляет 0,5 мм, а в относительных единицах она равна: (0,5 мм/10 мм)*100% = 5%. Если при отсутствии случайных ошибок каждый раз при повторении этого эксперимента будет наблюдаться погрешность, равная 0,5 мм, говорят, что датчик в диапазоне 10 мм имеет систематическую погрешность, равную 0,5 мм. Но, как правило, случайные ошибки всегда присутствуют, поэтому на практике систематическая погрешность чаще всего представляется в виде среднего значения из множества экспериментальных значений.
На рис. 2А показана идеальная или теоретическая передаточная функция. В реальной
жизни любой датчик обладает теми или иными недостатками. Толстой линией на рисунке выделена одна из реальных передаточных функций, которые не обязательно являются линейными и монотонными. Реальная функция почти никогда не совпадает с идеальной. Даже когда датчики изготавливаются в идентичных условиях, из-за разницы в материалах, в мастерстве работников, ошибок разработчиков, производственных допусков и т.п., их передаточные функции всегда будут различаться друг от друга. Однако все они не должны выходить за пределы определенной зоны, лежащей в границах предельно допустимых погрешностей, которые находятся от линии идеальной передаточной функции на расстоянии ±∆. Следовательно, разница между реальной и идеальной передаточной функцией δ всегда должна быть меньше или равна ∆. Для примера рассмотрим ситуацию, когда входной сигнал датчика равен х (рис. 2А). В идеальном случае при этом выходной сигнал должен быть равен Y, что соответствует точке z на передаточной функции. Вместо этого по реальной функции при значении х мы попадем в точку Z, и, следовательно, получим выходной сигнал, равный Y', соответствующий точке z'. Ha идеальной передаточной функции, которой, в свою очередь, должен соответствовать входной сигнал х'. Поскольку х' < х, погрешность измерений в данном случае будет равна - δ.
На точность датчиков влияют такие характеристики как: гистерезис, мертвая зона, параметры калибровки, повторяемость датчиков от партии к партии и воспроизводимость погрешностей, которые будут рассмотрены далее. Предельно допустимые погрешности обычно соответствуют самым худшим рабочим характеристикам датчиков. Из рис. 2Б видно, что при более корректном проведении калибровки (например, при проведении калибровки на большем количестве точек), калибровочная кривая проходит ближе к реальным передаточным функциям, что означает повышение точности измерений. На практике пределы допустимых погрешностей устанавливаются не вокруг идеальной передаточной функции, а относительно калибровочной кривой. Допустимые пределы становятся меньше, если они не включают в себя погрешности, связанные с различиями датчиков от партии к партии, а также когда они относятся только к одному специально откалиброванному датчику. Все это повышает точность измерений, однако значительно повышает стоимость, из-за чего во многих ситуациях эти методы не могут быть применены.
Погрешность датчиков может быть представлена в следующих видах:
1. Непосредственно в единицах измеряемой величины (∆),
2. В процентах от значения максимального входного сигнала,
З. В единицах выходного сигнала.
В современных датчиках точность часто характеризуется величиной статистической ошибки измерений, учитывающей влияние как систематических, так и случайных погрешностей, и независящих от ошибок, допущенных при определении передаточных функций.
Калибровка
Если производственные допуски на датчик и допуски на интерфейс (схемы преобразования сигналов) превышают требуемую точность системы, всегда необходимо проводить калибровку. Например, требуется измерить температуру с точностью ±0.5 °С датчиком, по справочным данным обладающим погрешностью ±1 °С. Это можно сделать только после проведения калибровки конкретного датчика, что необходимо для нахождения его индивидуальной передаточной функции, а также после проведения полной калибровки системы. В процессе проведения полной калибровки определяются коэффициенты, описывающие передаточную функцию всей системы в целом, включая датчик, интерфейсное устройство и АЦП. Математическое описание передаточной функции необходимо знать до начала проведения калибровки. В процессе калибровки необходимо определить коэффициенты передаточной функции, проводя калибровочные измерения в нескольких точках в зависимости от вида передаточной функции.
Для проведения калибровки датчиков важно иметь точные физические эталоны, позволяющие моделировать соответствующие внешние воздействия. Например, при калибровке контактного датчика температуры его необходимо помещать либо в резервуар с водой, либо в «сухой колодец», в которых есть возможность точно регулировать температуру. При калибровке инфракрасных датчиков требуется наличие черного тела, а для калибровки гигрометров - набор насыщенных растворов солей, используемых для поддержания постоянной относительной влажности в закрытом контейнере и т.д. Отсюда ясно видно, что точность последующих измерений напрямую связана с точностью проведения калибровки.
Гистерезис
Гистерезис – это разность значений выходного сигнала для одного и того же входного сигнала, полученных при его возрастании и убывании (рис. 3). Например, пусть показания датчика перемещений при движении объекта слева направо отличаются на 20 мВ от его показаний при движении в той же самой точке справа налево. Если чувствительность датчика составляет 10 мВ/мм, ошибка гистерезиса будет равна 2 мм. Типичной причиной возникновения гистерезиса является трение и структурные изменения материалов.
Нелинейность
Нелинейность определяется для датчиков, передаточную функцию которых возможно аппроксимировать прямой линией (уравнение (1)). Под нелинейностью понимается максимальное отклонение L реальной передаточной функции от аппроксимирующей прямой линии. Под термином «линейность» на самом деле понимается «нелинейность».
При проведении нескольких циклов калибровки выбирается худшее из полученных значений нелинейности. Нелинейность обычно выражается либо в процентах от максимального входного сигнала, либо в единицах измеряемых величин (например, в кПа или оС). В зависимости от способа проведения аппроксимирующей линии различают несколько типов линеаризации. Один из способов – проведение прямой через конечные точки передаточной функции (рис. 4А). Для этого сначала определяются выходные значения, соответствующие наибольшему и наименьшему внешним воздействиям, а потом через эти точки проводится прямая линия (линия 1). При такой линеаризации ошибка нелинейности минимальна в конечных точках и максимальна где-то в промежутке между ними.
Другой способ линеаризации основан на применении метода наименьших квадратов (линия 2 на рис. 4А). Для этого в широком диапазоне измеряемых величин (лучше в полном диапазоне) для ряда значений (n) внешних воздействий s измеряются выходные сигналы S. После чего, применяя формулу линейной регрессии, определяют значения коэффициентов а и b:
где Σ- это сумма n чисел.
На практике, в некоторых случаях, может потребоваться большая точность линеаризации в узком диапазоне входных сигналов. Например, медицинские термометры должны обладать повышенной точностью в диапазоне 37 оС...38 оС. Вне этой зоны точность может быть несколько ниже. В этом случае калибровку проводят в узкой области, где требуется повышенная точность, после чего через калибровочную точку с проводится аппроксимирующая линия (линия 3 на рис. 4А). В результате такой процедуры наименьшее значение нелинейности достигается в зоне калибровочной точки, а ближе к концам диапазона измерения линейность значительно ухудшается. Как видно из рисунка, в данном методе аппроксимирующая линия часто является касательной к передаточной функции в точке калибровки с. Если известно выражение для реальной передаточной функции, наклон этой линии может быть найден по уравнению (2).
Метод независимой линеаризации часто называется «методом наилучшей прямой» (рис. 4Б). Он заключается в нахождении линии, проходящей посередине между двумя параллельными прямыми, расположенными, как можно, ближе друг к другу и охватывающими все выходные значения реальной передаточной функции.
В зависимости от метода линеаризации аппроксимирующие линии будут иметь разные коэффициенты а и b. Следовательно, значения нелинейности, полученные разными способами, могут серьезно различаться друг от друга.
Насыщение
Каждый датчик имеет пределы рабочих характеристик. Даже если он считается линейным, при определенном уровне внешнего воздействия его выходной сигнал перестанет отвечать линейной зависимости. В этом случае говорят, что датчик вошел в зону нелинейности или в зону насыщения.
Воспроизводимость
Воспроизводимость – это способность датчика при соблюдении одинаковых условий выдавать идентичные результаты. Причинами плохой воспроизводимости результатов часто являются: тепловой шум, поверхностные заряды, пластичность материалов и т.д.
Мертвая зона
Мертвая зона – это нечувствительность датчика в определенном диапазоне входных сигналов. В пределах этой зоны выходной сигнал остается постоянным (часто равным нулю).
Дата добавления: 2016-04-19; просмотров: 2862;