Как же выглядит картина мира?

Каждый шаг в изучении природы — это всегда только приближение к истине, вернее, к тому, что мы считаем истиной.

Принцип науки состоит в следующем: пробный камень всех наших знаний - это опыт. Опыт, эксперимент — это единственный судья научной «истины». А в чем же источник знаний? Откуда приходят те законы, которые мы проверяем с помощью опыта? Да из того же опыта; он помогает нам выводить законы, в нем таятся намеки на них. А сверх того. нужно еще воображение, чтобы за намеками увидеть что-то большое и главное, чтобы отгадать неожиданную, простую прекрасную картину, встающую за ними и потом поставить опыт, который убедил бы нас в правильности догадки. Этот процесс воображения настолько труден, что происходит разделение труда: бывают физики-теоретики, они воображают, соображают и отгадывают новые законы, но опытов не ставят, и бывают физики-экспериментаторы, чьё занятие — ставить опыты, воображать, соображать и отгадывать.

Законы природы — это приближения. Вначале открывают «неправильные» законы, а потом уж – «правильные». Но как, опыт может быть «неверным»? Ну, во-первых, по самой простой причине: когда в ваших приборах что-то неладно, а вы этого не замечаете. Но такую ошибку легко уловить, надо лишь все проверять и проверять. Ну, а если не придираться к мелочам, могут ли все-таки результаты опыта быть ошибочными? Могут, из-за нехватки точности. Например, масса предмета кажется неизменной (вращающийся волчок весит столько же, сколько лежащий на месте). Вот вам и готов «закон»: масса постоянна и от скорости не зависит. Но этот «закон», как выясняется, неверен. Оказалось, что масса с увеличением скорости растет, но только для заметного роста нужны скорости, близкие к световой. Правильный закон таков: если скорость предмета меньше 100 км/сек, масса с точностью до одной миллионной постоянна. Вот примерно в такой приближенной форме этот закон верен. Можно подумать, что практически нет существенной разницы между старым законом и новым. И да, и нет. Для обычных скоростей можно забыть об оговорках и в хорошем приближении считать законом утверждение, что масса постоянна. Но на больших скоростях мы начнем ошибаться, и тем больше, чем скорость выше.

Но самое замечательное, что с общей точки зрения любой приближенный закон абсолютно ошибочен. На наш взгляд, взгляд на мир потребует пересмотра даже тогда, когда масса изменится хоть на капельку. Это — характерное свойство общей картины мира, которая стоит за законами. Даже незначительный эффект иногда требует глубокого изменения наших воззрений.

Так что же нам нужно изучить сначала? Учить ли нам правильные, но необычные законы с их странными и трудными понятиями, например теорию относительности, четырехмерное пространство-время и т. д.? Или же начать с простого закона «постоянной массы»? Он хоть и приближенный, но зато обходится без, трудных представлений. Первое, бесспорно, приятней и притягательней; первое очень соблазняет, но со второго начать легче, и потом ведь это первый шаг к углубленному пониманию правильной идеи. Этот вопрос встает все время, когда преподаешь физику. На разных этапах обучения мы по-разному будем решать его, но на каждой стадии мы будем стараться изложить, что именно сейчас известно и с какой точностью, как это согласуется с остальным и что может измениться, когда мы узнаем об этом больше.

Давайте перейдем к нашей, схеме, к очерку нашего понимания современной науки (в первую очередь физики, но также и прочих близких к ней наук), так что, когда позже придется вникать в разные вопросы, мы сможем видеть, что лежит в их основе, чем они интересны и как укладываются в общую структуру. Итак, как же выглядит картина мира?

 

Материя, взаимодействие, движение

Вопросы механического движения, возникающие в различных разделах физики, нет никаких оснований относить не к механике, а к этим разделам физики, если эти вопросы таковы, что по своему существу они могут быть рассмотрены в рамках механики, т. е. для их решения не требуется применять никаких других законов, кроме законов механики. Эти законы позволяют определить движение тел, если известны действующие на тела силы. Происхождение этих сил, механизм их возникновения, для определения движения тел не имеет значения. Необходимо лишь располагать независимым (т. е. не опирающимся на самые законы движения) способом измерения сил, обеспечивающим возможность измерить или рассчитать силы, действующие в каждом конкретном случае. Тогда, пользуясь законами Ньютона (или следствиями из них), можно найти движение тела, т. е. решить задачу механики.

Вопрос же о происхождении сил выходит за рамки механики, поэтому в механике вообще не рассматривается. Поэтому принципиально неправильно разделять задачи о движении тел на «механику» и «немеханику» с точки зрения происхождения сил, вызывающих движение. Ведь нет никаких признаков, по которым упругие силы, силы трения и силы всемирного тяготения можно относить к механике, а силу Лорентца — к «немеханике», поскольку, например, в возникновении упругих сил существенную роль играют силы взаимодействия между электрическими зарядами ионов кристаллической решетки. Поэтому такое разделение было бы совершенно условным и с точки зрения современных физических представлений не оправданным.

 

Хотя изучение законов физики интересно и поучительно, хотя они и помогают нам понимать природу и овладевать ее силами, все же порой стоит остановиться и поразмыслить: что же они на самом деле значат? Смысл любого утверждения — вещь, которая издавна, с незапамятных времен, интересовала и тревожила философов, а уж смысл физических законов тем более должен волновать нас, ведь повсеместно считается, что в этих законах таятся некоторые реальные знания. Смысл истины — это глубочайший философский вопрос; всегда важно вовремя спросить: что это значит?

Спросим же: в чем смысл физических законов Ньютона, в чем смысл формулы F=ma? В чем смысл силы, массы и ускорения? Мы интуитивно понимаем, что такое масса; мы можем также определить ускорение, если нам понятно, что такое место и что такое время. Смысл этих понятий мы поэтому не будем обсуждать, а сосредоточимся на новом понятии силы. И здесь ответ тоже весьма прост: если тело ускоряется, значит на него действует сила. Так говорят законы Ньютона, и самое точное и красивое из мыслимых определений силы состояло бы в том, что сила есть масса тела, умноженная на его ускорение.

Имеется, положим, закон, что импульс сохраняется тогда, когда сумма внешних сил равна нулю. И вот у нас спрашивают: «А что это значит: сумма внешних сил равна нулю?» И мы любезно отвечаем: «Когда полный импульс постоянен, то сумма внешних сил равна нулю». Нет, здесь что-то не то. Ведь ничего нового мы при этом не сказали. Обнаружив основной закон, утверждающий, что сила есть масса на ускорение, а потом определив силы как произведение массы на ускорение, мы ничего нового не открываем. Можно также определить силу и на другой манер: движущееся тело, на которое сила не действует, продолжает двигаться по прямой с постоянной скоростью. Тогда, увидев, что тело не движется по прямой с постоянной скоростью, мы можем утверждать, что на него действует сила. Но такие высказывания не могут составить содержание физики: зачем же ей гонять определения по кругу? Несмотря на это, приведенное выше положение Ньютона, по-видимому, самое точное из всех определений силы, одно из тех, которые так много говорят сердцу математика. И все же оно совершенно бесполезно, потому что из одного определения никогда ничего никто не выводил. Можно день-деньской просиживать в кресле, определяя слова по своему хотению, но совсем иное дело — понять, что происходит при столкновении двух шаров или что бывает, когда груз висит на пружинке. Поведение тел и выбор определений — между этими вещами нет ничего общего.

Пусть, например, мы бы решились говорить, что тело, предоставленное самому себе, лежит на месте и не движется; тогда, заметив, что что-то движется, мы бы стали утверждать, будто на него действует «жила»— мера охоты к перемене мест. Мы получили бы прекрасный новый закон, все было бы хорошо, кроме тех случаев, когда действует «жила». Как видите, все было бы подобно нашему определению силы и точно так же не несло бы в себе никакой информации. Истинное же содержание законов Ньютона таково: предполагается, что сила обладает независимыми свойствами в дополнение к закону F=ma; но характерные независимые свойства сил не описал полностью ни Ньютон, ни кто-нибудь еще; поэтому физический закон F=ma — закон неполный. Он подразумевает, что, изучив характеристики величины, определяемой как произведение m на а, мы обнаружим в них некоторую простоту; закон этот дает нам хорошую программу анализа природы, он подсказывает нам, что свойства этой величины — силы — могут оказаться простыми, что ее стоит изучать.

Первый пример таких сил — полный закон тяготения, предложенный Ньютоном. Формулируя свой закон, он отвечал на вопрос: что такое сила? Если бы ничего, кроме тяготения, не существовало, то сочетание этого закона и закона силы (второго закона движения) оказалось бы завершенной теорией. Но, кроме тяготения, существует и многое другое, и мы собираемся пользоваться законами Ньютона во всевозможных положениях. Поэтому нам придется кое-что порассказать о свойствах сил.

К примеру, говоря о силе, мы всегда неявно предполагаем, что когда нет физических тел, то сила равна нулю. Если мы видим, что сила не равна нулю, мы ищем по соседству ее источник. Это предположение совсем не то, что введенная нами «жила».

Одна из важнейших характеристик силы — ее материальное происхождение; и это свойство как раз нельзя считать определением.

Ньютон привел еще одно правило, касающееся сил: силы между взаимодействующими телами равны и противоположны; действие равно противодействию. И это правило, оказывается, не совсем верно. Да и сам закон F=ma не совсем верен; будь он определением, мы бы должны были утверждать, что он точно верен всегда; а на самом деле это не так.

Вы можете заявить: «А мне не нравится эта неточность, я хочу, чтобы все определялось точно, да и во многих книжках написано, что наука — вещь точная, что в ней все определено». Но сколько бы вы ни настаивали на точном определении силы, вы его никогда не получите! Во-первых, и сам Второй закон Ньютона не точен, а во-вторых, чтобы понять физические законы, вы должны усвоить себе раз и навсегда, что все они — в какой-то степени приближения.

Любое простое высказывание является приближенным; в виде примера рассмотрим некоторый предмет... кстати, что такое предмет? «Философы» всегда отвечают: «Ну, например, стул».

Стоит услышать это и сразу становится ясно, что они сами не понимают того, о чем говорят. Что есть стул? Стул имеет определенную массу... Определенную? Насколько определенную? Из него время от времени вылетают атомы — немного, но все же! На него садится пыль, из него сыплется труха, да и лак со временем сходит. Четко определить стул, сказать точно, какие атомы принадлежат ему, какие — воздуху, а какие— лаку, невозможно. Значит, массу стула можно определить лишь приближенно. Точно так же невозможно определить массу отдельного предмета, ибо таких предметов не существует, в мире нет одиноких, обособленных объектов; любая вещь есть смесь множества других, и мы всегда имеем дело с рядом приближений и идеализации. Вся суть в идеализации. В очень хорошем приближении (около 1 к 1010) количество атомов стула за минуту не меняется. Если вас эта точность устраивает, вы имеете право считать массу стула постоянной. Точно так же можно идеально изучить и характеристики силы, стоит только не гнаться за точностью. Вас может не удовлетворить этот приближенный взгляд на природу, который пытается выработать физика (все время стремясь повысить точность приближений), вы можете предпочесть математическое определение, но оно никогда не действует в реальном мире. Математические определения хороши для математики — там можно полностью и до конца следовать логике, а физический мир сложен. Мы об этом уже говорили, приводя такие примеры, как океанские волны и бокал вина. Пытаясь разделить их на части, мы толкуем отдельно о массе вина и отдельно о массе бокала. Но как можно узнать, где одно, где другое, раз одно растворимо в другом? И сила, действующая на обособленный предмет, уже включает неточность, и всякая система рассуждений о реальном мире, по крайней мере сегодня, предполагает разного рода приближения.

Эта система ничем не похожа на математические рассуждения. В них все может быть определено, и в итоге всегда не известно, о чем говорят.

Действительно, ведь все великолепие математики в том и состоит, что в ней мы не знаем, о чем толкуем. Ее законы, ее доказательства, ее логика не зависят от того, чего они касаются, — и в этом своя, особая красота. Когда вы имеете другую совокупность объектов, подчиняющихся той же системе аксиом, что и евклидова геометрия, то вы можете выдвинуть новые определения и делать выводы, сообразуясь с правильной логикой, — все следствия окажутся правильными, и совершенно неважно, чего они касаются. А в природе? Когда вы проводите линию или провешиваете ее при помощи луча света и теодолита (как это делается на геодезических съемках) — следует ли природа Евклиду? Нет, вы делаете приближение; крест на объективе имеет определенную толщину, а геометрическая линия — никакой; значит, применять ли в съемках евклидову геометрию или нет — это вопрос физики, а не математики.

Конечно, с экспериментальной (а не математической) точки зрения вам нужно знать, применимы ли законы Евклида к тому роду геометрии, которую вы используете, измеряя окрестности; вы предполагаете, что да, применимы. И, действительно, они прекрасно работают; прекрасно, но не точно, потому что ваши съемочные линии — это не настоящие геометрические линии. Приложимы или нет абстрактные евклидовы прямые к линиям, провешиваемым на опыте, — есть дело самого опыта; на этот вопрос чистым рассуждением не ответить.

Точно таким же образом вы не можете назвать F=ma определением, вывести из него все чисто математически и сделать механику математической теорией: механика — это описание природы. Выдвигая подходящие постулаты, всегда можно создать математическую систему вроде евклидовой, но вы не можете создать математики мира; рано или поздно вам пришлось бы отвечать на вопрос: выполняются ли эти аксиомы на объектах природы? И вы немедленно завязли бы среди этих запутанных, «нечистых» реальных предметов, — правда, добиваясь все большей и большей точности приближений.

 








Дата добавления: 2016-04-19; просмотров: 670;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.