Параметры интегральных микросхем
В отличие от полупроводниковых диодов и транзисторов интегральные микросхемы представляют собой не отдельные элементы, а целые функциональные устройства, предназначенные для преобразования электрических сигналов. В зависимости от назначения в интегральной микросхеме могут нормироваться разные параметры, характеризующие функциональное устройство в целом. По назначению все интегральные микросхемы подразделяются на два класса: линейно-импульсные и логические.
К линейно-импульсным микросхемам относят микросхемы, которые обеспечивают примерно пропорциональную зависимость между входными и выходными сигналами. Входным сигналом чаще всего является входное напряжение, реже входной ток, выходным сигналом— выходное напряжение. Простейшим примером линейно-импульсной микросхемы является широкополосный усилитель.
Для линейно-импульсных микросхем основными функциональными параметрами являются: коэффициент усиления по напряжению Ku, входное сопротивление Rвх, выходное сопротивление Rвых, максимальное выходное напряжение UВыx mах, границы частотного диапазона fн и fв, где fн — нижняя, а fв— верхняя рабочие частоты.
В зависимости от назначения линейно-импульсной микросхемы ее параметры могут принимать различные значения. Однако в настоящее время наметилась тенденция к созданию ряда линейно импульсных микросхем универсального назначения, среди которых прежде всего следует назвать широкополосный усилитель постоянного тока. Ориентировочные параметры такого усилителя следующие: K ≥ 50 000, Rвх≥0,5 МОм, Rвых≤100 Ом, fв=20 МГц.
Логические интегральные микросхемы, как правило, представляют собой устройства с несколькими входами и выходами. В них, как входные, так и выходные напряжения могут принимать лишь определенные значения, при этом выходное напряжение зависит от наличия или отсутствия напряжений на различных входах устройства. Основными параметрами этих микросхем являются входное и выходное напряжения и быстродействие. Более подробно функциональные параметры микросхем будут приведены в главах, посвященных различным полупроводниковым устройствам. Общетехнические параметры интегральных микросхем — механическая прочность, диапазон рабочих температур, устойчивость к пониженным и повышенным давлениям и влагостойкость — обычно не хуже, чем у диодов и транзисторов.
Как было отмечено, важным преимуществом интегральных микросхем является их высокая надежность. Другим не менее важным преимуществом являются их малые массогабаритные параметры. Большие интегральные схемы (БИС), содержащие до нескольких десятков — сотен тысяч элементов, имеют массу, не превышающую нескольких грамм. При этом большая ее часть приходится на корпус, выводы и подложку, а не на активные полупроводниковые элементы. Плотность активных элементов в самой БИС достигает 10 000—50 000 эл/см3. Это в 50—100 раз больше, чем при использовании отдельных транзисторов, диодов, резисторов и т. д. в микромодульных схемах.
Интегральные микросхемы обладают высоким быстродействием, так как их малые размеры обеспечивают снижение таких паразитных параметров, как межэлектродные емкости и индуктивности соединительных проводников. Это позволяет создать высокочастотные усилители на частоты 1—3 ГГц и быстродействующие логические схемы с задержкой не более 0,1 нс.
Достоинством интегральных микросхем является также их высокая экономичность. Даже большие интегральные схемы обычно потребляют мощность не более 100—200 мВт, существуют микросхемы, потребляющие от источника питания не более 10—100 мкВт. Такие низкие потребляемые мощности позволяют снизить расход электроэнергии, уменьшить массу источников питания устройств, выполненных с применением интегральных микросхем.
Дата добавления: 2016-04-06; просмотров: 1681;