Отметим также некоторые эксплуатационные особенности АЭС.

АЭС в силу ряда технических причин не могут работать в маневренных режимах, т.е. участвовать в покрытии переменной части графика электрической нагрузки. Конечно, из-за высокой стоимости АЭС должны работать с максимальной нагрузкой, но при их высокой доле в установленной мощности отдельных объединенных энергосистем и при больших неравномерностях графика суточной и недельной нагрузки возникает необходимость быстрых нагружений и разгружений АЭС, которые для них крайне нежелательны.

Параметры энергоблоков АЭС существенно ниже, чем ТЭС: температура пара перед турбиной почти в 2 раза, а давление более чем в 3 раза меньше. Это означает, что работоспособность 1 кг пара, протекающего через турбину АЭС, оказывается примерно вдвое меньше, чем через турбину ТЭС. Вместе с тем, большие капитальные затраты требуют большой единичной мощности энергоблоков АЭС. Отсюда — огромные расходы пара через турбоагрегаты АЭС по сравнению с турбоагрегатами ТЭС и соответственно огромные расходы охлаждающей воды.


Гидроэнергетика.

Гидравлическая энергия является возобновляемым источником энергии.

Территория, с которой стекает вода в реку, называется водосборным бассейномданной реки.

Линия —проходящая по повышенным местам и отделяющая друг от друга соседние бассейны, называется водораздельной линией или водоразделителем.

К водосборному бассейну моря относятся водосборные бассейны всех рек, впадающих в данное море.

 

Среднегодовой сток всех рек мира составляет 32 тыс. км3.

Запасы поверхностного стока по территории России распределены неравномерно, что весьма неблагоприятно для народного хозяйства, в том числе и для энергетики. Более 80 % речного стока российских рек приходится на еще мало освоенные территории бассейнов Северного Ледовитого и Тихого океанов.

Особенностью стока реки является его неравномерное распределение как по годам, так и в течение года.

Многолетняя неравномерность стока неблагоприятна для всех отраслей народного хозяйства и прежде всего для энергетики. Различают: многоводные, средневодные и маловодные годы. В маловодные годы обычно значительно снижается выработка энергии на гидроэлектростанциях.

Для большинства рек России маловодный период наблюдается зимой, когда потребность в электроэнергии наибольшая.

 

Гидрограф - хронологический график изменения расходов воды во времени.

Форма гидрографа зависит от типа питания реки (снеговое, дождевое, ледниковое и т.п.)

Гидрограф характеризуется максимальным, минимальным и средним значениями расхода воды за рассматриваемый период (на графике Qmax, Qmin, Q).

Суммарный объем воды, прошедший через поперечное сечение водотока от какого-либо начального момента времени t0 до некоторого конечного tк, называется стоком W.

 

Гидроэнергетические ресурсы подразделяют на потенциальные (теоретические), технические и экономические.

Потенциальные гидроэнергетические ресурсы — это теоретические запасы. Они подсчитываются в предположении, что весь сток будет использован для выработки электроэнергии без потерь при преобразовании гидравлической энергии в электрическую, т.е. коэффициент полезного действия η = 1.

Мировые потенциальные гидроэнергетические ресурсы оцениваются в 35 трлн. кВт · ч в год и 4000 ГВт среднегодовой мощности. Потенциальные ресурсы России составляют 2896 млрд кВт · ч при среднегодовой мощности 330 Гвт.

Технические гидроэнергетические ресурсы всегда меньше потенциальных, так как они учитывают потери:

• напоров — гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков (бьеф — часть реки, канала, водохранилища или другого водного объекта, примыкающая к гидротехническому сооружению);

• расходов — испарение из водохранилищ, фильтрацию, холостые сбросы и т.п.;

• энергии в оборудовании.

Они (ресурсы) характеризуют техническую возможность получения энергии на современном этапе.

Технические гидроэнергетические ресурсы России составляют 1670 млрд кВт · ч в год, в том числе по малым ГЭС — 382 млрд кВт · ч в год. Выработка электроэнергии на действующих ГЭС России в 2002 г. составила 170,4 млрд кВт · ч, в том числе на малых ГЭС — 2,2 млрд кВт · ч.

Экономические гидроэнергетические ресурсы — это часть технических ресурсов, которую по современным представлениям целесообразно использовать в обозримой перспективе. Они существенно зависят от прогресса в энергетике, удаленности ГЭС от места подключения к энергосистеме, обеспеченности рассматриваемого региона другими энергетическими ресурсами, их стоимостью, качеством и т.п. Экономические гидроэнергетические ресурсы переменны во времени и зависят от многих изменяющихся факторов. В настоящее время в мире наблюдается тенденция роста оценки экономических гидроэнергетических ресурсов.

 

Дадим определение гидроэнергетической установке и запишем её типы.

Гидроэнергетическая установка (ГЭУ) предназначена для преобразования механической энергии водного потока в электрическую энергию или, наоборот, электрическая энергия преобразуется в механическую энергию воды.

Гидроэнергетическая установка состоит из гидротехнических сооружений, энергетического и механического оборудования.

Различают следующие основные типы гидроэнергетических установок:

• гидроэлектростанции (ГЭС);

• насосные станции (НС);

• гидроаккумулирующие электростанции (ГАЭС);

• комбинированные электростанции ГЭС—ГАЭС;

• приливные электростанции (ПЭС).

Гидроэлектростанция — это предприятие, на котором гидравлическая энергия преобразуется в электрическую.

Основными сооружениями ГЭС на равнинной реке являются плотина, создающая водохранилище и сосредоточенный перепад уровней, т.е. напор, и здание ГЭС, в котором размещаются гидравлические турбины, генераторы, электрическое и механическое оборудование. В случае потребности строятся водосбросные и судоходные сооружения, водозаборы для систем орошения и водоснабжения, рыбопропускные сооружения и т.п.

Вода под действием тяжести по водоводам движется из верхнего бьефа в нижний, вращая рабочее колесо турбины. Гидравлическая турбина соединена валом с ротором генератора. Турбина и генератор вместе образуют гидроагрегат. В турбине гидравлическая энергия преобразуется в механическую энергию вращения на валу агрегата, а генератор преобразует эту энергию в электрическую.

Возможно создание на реках каскадов ГЭС. В России построены и успешно эксплуатируются Волжский, Камский, Ангарский, Енисейский и другие каскады ГЭС.

Все построенные ГЭС, особенно обладающие крупными водохранилищами, играют решающую роль в обеспечении надежности, устойчивости и живучести Единой энергетической системы России.

Большой интерес в мире и в России в настоящее время вызывает возможность создания малых ГЭС.

Малые ГЭС(мощностью до 30 МВт) могут создаваться в короткие сроки с использованием унифицированных гидроагрегатов и строительных конструкций с высоким уровнем автоматизации систем управления. Экономическая эффективность их использования существенно возрастает при комплексном использовании малых водохранилищ (рекреация, рыбоводство, водозаборы для систем орошения и водоснабжения и т.п.).

 

Гидроаккумулирующая электростанция предназначена для перераспределения во времени энергии и мощности в энергосистеме. В часы пониженных нагрузок ГАЭС работает как насосная станция. Она за счет потребляемой энергии перекачивает воду из нижнего бьефа в верхний и создает запасы гидроэнергии. В часы максимальной нагрузки ГАЭС работает как гидроэлектростанция. Вода из верхнего бьефа пропускается через турбины в нижний бьеф, и ГАЭС вырабатывает и выдает электроэнергию в энергосистему. ГАЭС потребляет дешевую электроэнергию, а выдает более дорогую энергию в период пика нагрузки, заполняет провалы нагрузки и снижает пики нагрузки в энергосистеме, позволяет работать агрегатам атомных и тепловых электростанций в наиболее экономичном и безопасном равномерном режиме.

В России работает Загорская ГАЭС мощностью 1200 МВт.

ГЭС—ГАЭС вырабатывает электроэнергию в период пика нагрузки за счет притока воды в верхний бьеф и за счет перекаченной из нижнего бьефа в верхний в период провалов нагрузки в энергосистеме.

Реконструкция ГЭС в ГЭС—ГАЭС, как показывает зарубежный опыт, весьма эффективна в энергосистемах, где мала доля ГЭС и ГАЭС.

Насосная станция предназначена для перекачки воды с низких отметок на высокие и транспортировки воды в удаленные пункты.

На насосной станции устанавливаются насосные агрегаты, состоящие из насоса и двигателя. Насосная станция является потребителем электрической энергии.

Они используются для водоснабжения тепловых и атомных электростанций, коммунально-бытового и промышленного водоснабжения и т. п.

 

Приливные электростанции преобразуют механическую энергию приливно-отливных колебаний уровня воды в море в электрическую энергию. В некоторых морских заливах приливы достигают 10—12 м. Наибольшие приливы наблюдаются в заливе Фанди (Канада) и достигают 19,6 м.

Технические ресурсы приливной энергии России оцениваются в 200—250 млрд кВт · ч в год и в основном сосредоточены у побережий Охотского, Берингова и Белого морей.

В России наиболее перспективным наплавным способом возведена опытная Кислогубская ПЭС вблизи г. Мурманска. Во Франции построена ПЭС Ранс мощностью 240 МВт.

Принцип работы электростанции представлен на рисунке.

 

Разберем характеристики водохранилища.

Нормальным подпорным уровнем (НПУ) называется максимальный уровень воды, при котором ГЭС и все сооружения гидроузла могут работать сколь угодно длительно. Объем водохранилища при отметке НПУ называется полным объемом. Минимальный уровень водохранилища, до которого возможна его сработка при нормальной эксплуатации, называется уровнем мертвого объема (УМО). Ниже этого уровня возможна лишь аварийная сработка водохранилища.

Объем воды между НПУ и УМО называется полезным, так как этот объем используется при регулировании стока в нормальных условиях эксплуатации.

Объем воды, находящийся ниже УМО, называется мертвым, так как он не используется в нормальных условиях эксплуатации.

При прохождении расхода очень редкой повторяемости (катастрофический паводок), существенно превышающего пропускную способность ГЭС и водосбросных сооружений, уровень воды в водохранилище повышается выше НПУ. Максимально возможный уровень воды в водохранилище по условиям надежности сооружений называется форсированным подпорным уровнем (ФПУ). Объем водохранилища между отметками ФПУ и НПУ называется резервным. Он используется только для трансформации (срезки) половодий редкой повторяемости. Резервный объем должен быть сработан до НПУ сразу же по прошествии половодья.

 

Различают три основные схемы использования водной энергии:

• плотинная, при которой напор создается плотиной;

• деривационная, напор создается преимущественно с помощью деривации, выполняемой в виде канала, туннеля или трубопровода (деривация в гидротехнике — отвод воды от русла реки в различных целях по каналу или системе водоводов);

• плотинно-деривационная, в которой напор создается плотиной и деривацией.

Плотинная схема использования водной энергии обычно выполняется при больших расходах воды и малых уклонах ее свободной поверхности. Посредством плотины подпирается река и создается напор воды Н0. Подпор воды от плотины распространяется вверх по реке. Разность уровней воды в верховье водохранилища и у плотины равна Н0 + Δh. Общее падение реки на участке равно Н. Часть общего падения уровня реки Δh будет потеряна при движении воды в верхнем бьефе. Сосредоточенный перепад уровней, т.е. напор, будет равен H0 = Н - Δh. Плотинная схема в зависимости от напора может быть русловой и приплотинной.

Русловой называется такая гидроэлектростанция, в которой здание ГЭС входит в состав напорного фронта. В этом случае здание ГЭС воспринимает полное давление воды со стороны верхнего бьефа. Русловая ГЭС строится при сравнительно небольших напорах, например гидроэлектростанции Волжско-Камского каскада.

При средних и больших напорах, превышающих диаметр турбины более чем в 6 раз, здание ГЭС не может входить в состав напорных сооружений. Здание ГЭС располагается за плотиной и не воспринимает полное давление воды, а гидроэлектростанция называется приплотинной. Вода к турбинам приплотинной ГЭС подводится водоводами, размещенными в теле или поверх бетонной плотины, под грунтовой плотиной или туннелями в обход плотины. Примерами могут служить Красноярская, Братская и Саяно-Шушенская ГЭС.

 

Поговорим подробнее о деривационной и комбинированной схеме.

Деривационная схема использования водной энергии обычно выполняется при малых расходах воды и больших уклонах ее свободной поверхности. В деривационной схеме плотина возводится невысокой, лишь обеспечивающей забор воды в деривацию, а напор создается за счет разности уклонов воды в реке и деривации. Деривация может выполняться безнапорной в виде открытого канала или безнапорного туннеля. Чаще деривация бывает напорной в виде напорного туннеля или напорного трубопровода.

Сооружение деривационных ГЭС оказывается целесообразным в горных условиях при больших уклонах рек и относительно малых расходах воды; тогда при небольшой протяженности и малой площади сечения деривационного водовода можно получить большой напор и соответственно большую мощность.

В плотинно-деривационной, или комбинированной, схеме используются наилучшим образом свойства предыдущих схем. Плотина создает водохранилище, а падение уровня реки ниже плотины используется деривацией. Чем выше по течению реки располагается плотина, тем меньше ее высота, меньше объем водохранилища и затопление территории, но удлиняется деривация и увеличиваются потери в ней напора.

Месторасположение плотины, тип и длина деривации выбираются на основе технико-экономического обоснования.

 

Сейчас рассмотрим регулирование стока реки водохранилищем.

Водохранилищем называется искусственный водоем, образующийся перед плотиной. Основное отличие водохранилища от естественного водоема (озера, пруда) заключается в его возможности регулирования (перераспределения) речного стока и уровневого режима.

Регулирование стока — это процесс перераспределения его водохранилищем в соответствии с требованиями водохозяйственного комплекса (энергетика, водоснабжение, орошение, судоходство, борьба с наводнениями, рыбное хозяйство и т.п.). Речной сток аккумулируется в водохранилище в периоды, когда естественная приточность воды превышает потребности в ней, и расходуется в периоды, когда потребность в воде превышает приточность.

Период аккумуляции речного стока называется наполнением водохранилища, а период отдачи наполненной воды — сработкой водохранилища.

 








Дата добавления: 2016-04-02; просмотров: 823;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.