Газообмен в легких и перенос газов кровью. 4 страница

Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО2. При вдыхании газовой смеси, содержащей 5-7% СО2, увеличение парциального давления СО2 в альвеолярном воздухе задерживает выведение СО2 из

369


венозной крови. Связанное с этим повышение напряжения СО2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыха­ния, концентрация СО2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО2 в альвеолах на 0.2% вы­зывает увеличение вентиляции легких на 100%. Роль СО2 как глав­ного регулятора дыхания, выявляется и в том, что недостаток со­держания СО2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному пре­кращению дыхательных движения (апное). Это происходит, напри­мер, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии — снижению парциального давления СО2 в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается.

Указанные изменения газового состава внутренней среды орга­низма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствителъные рецепторы, расположенные непосредственно в структурах продолговатого мозга ("центральные хеморецепторы') и в сосудистых рефлексогенных зонах ("перифери­ческие хеморецепторы").

Центральными (медуллярными) хеморецепторами, постоянно участву­ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО2 и кислотно-щелочному состоянию омывающей их межклеточной мозговой жид­кости. Хемочувствительные зоны имеются на переднебоковой поверх­ности продолговатого мозга около выходов подъязычного и блужда­ющего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация кото­рых зависит от напряжения СО2 в артериальной крови. Спинномоз­говая жидкость отделена от крови гемато-энцефалическим барьером, относительно непроницаемым для ионов Н+ и НСО3, но свободно пропускающим молекулярный СО2. При повышении напряжения СО2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н+, которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО2 и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейро­нов дыхательного центра продолговатого мозга. В результате этого, дыхание становится более глубоким и вентиляция легких растет, глав­ным образом, за счет увеличения объема каждого вдоха. Напротив, снижение напряжения СО2 и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО2 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания.

370


Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях: дуге аорты и месте деления (бифуркация) общей сонной артерии (каротидный си­нус), т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Однако, хеморецепторы представля­ют собой самостоятельные образования, заключенные в особых тель­цах — клубочках или гломусах, которые находятся вне сосуда. Аффе­рентные волокна от хеморецепторов идут: от дуги аорты — в со­ставе аортальной ветви блуждающего нерва, а от синуса сонной артерии — в каротидной ветви языкоглоточного нерва, так называ­емом нерве Геринга. Первичные афференты синусного и аортально­го нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга.

Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных {нормоксических) условиях эти рецепторы находятся в состоянии постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Умень­шение напряжения кислорода в артериальной крови ниже нормаль­ного уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов. Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посыла­емых хеморецепторами каротидного тельца.

Повышению напряжения СО2 артериальной крови и соответству­ющему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Особенность роли, которую играют артериаль­ные хеморецепторы в контроле за напряжением углекислоты, состо­ит в том, что они ответственны за начальную, быструю, фазу вен­тиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится на­пряжение СО2 области хемочувствительных мозговых структур.

Гиперкапническая стимуляция артериальных хеморецепторов, по­добно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО2 20-30 мм рт.ст и, сле­довательно, имеет место уже в условиях нормального напряжения СО2 в артериальной крови (около 40 мм рт.ст.).

Важным моментом для регуляции дыхания является взаимодей­ствие гуморальных стимулов дыхания. Оно проявляется, например, в том, что на фоне повышенного артериального напряжения СО2 или увеличенной концентрации водородных ионов вентиляторная ре­акция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение пар­циального давления углекислого газа в альвеолярном воздухе вызы­вают нарастание легочной вентиляции, превышающее арифметичес­кую сумму ответов, которые вызывают эти факторы, действуя по­рознь. Физиологическое значение этого явления заключается в том,

371


что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъ­емом газообмена и требует адекватного ему усиления работы дыха­тельного аппарата.

Установлено, что гипоксемия снижает порог и увеличивает ин­тенсивность вентиляторной реакции на СО2. Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О2 во вдыхаемом воздухе (например, при дыхании газовы­ми смесями с низким содержанием О2, при пониженном атмосфер­ном давлении в барокамере или в горах) возникает гипервентиля­ция, направленная на предупреждение значительного снижения пар­циального давления О2 в альвеолах и напряжения его в артеальной крови. При этом из-за гипервентиляции наступает снижение пар­циального давления СО2 в альвеолярном воздухе и развивается ги-покапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО2 во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О2 и СО2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, напряжение О2 все же снижается, и возникает умеренная гипоксемия.

В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморе­цепторов имеет жизненно важное значение для организма, напри­мер, в условиях дефицита О2. При гипоксии из-за снижения окис­лительного метаболизма в мозге чувствительность медуллярных хе­морецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих усло­виях получает интенсивную стимуляцию от артериальных хеморе­цепторов, для которых гипоксемия является адекватным раздражи­телем. Таким образом, артериальные хеморецепторы служат "ава­рийным" механизмом реакции дыхания на изменение газового со­става крови, и, прежде всего, на дефицит кислородного снабжения мозга.

Взаимосвязь регуляции внешнего дыхания и других функций организма.Обмен газов в легких и тканях и приспособление его к запросам тканевого дыхания при различных состояниях организма обеспечивается путем изменения не только легочной вентиляции, но и кровотока как в самих легких, так и других органах. Поэтому механизмы нейрогуморальной регуляции дыхания и кровообращения осуществляются в тесном взаимодействии. Рефлекторные влияния, исходящие из рецептивных полей сердечно-сосудистой системы (на­пример, гинокаротидной зоны), изменяют деятельность как дыха-


тельного, так и сосудодвигательного центров. Нейроны дыхательного центра подвержены рефлекторным воздействиям со стороны бароре-цепторных зон сосудов — дуги аорты, каротидного синуса. Сосудо-двигательные рефлексы неразрывно связаны и с изменением функ­ции дыхания. Повышение сосудистого тонуса и усиление сердечной деятельности, соответственно, сопровождаются усилением дыхатель­ной функции. Например, при физической или эмоциональной на­грузке у человека обычно имеет место согласованное повышение минутного объема крови в большом и малом круге, артериального давления и легочной вентиляции. Однако, резкое повышение арте­риального давления вызывает возбуждение синокаротидных и аор­тальных барорецепторов, которое приводит к рефлекторному тормо­жению дыхания. Понижение артериального давления, например, при кровопотере, приводит к увеличению легочной вентиляции, что вызвано, с одной стороны, снижением активности сосудистых баро­рецепторов, с другой — возбуждением артериальных хеморецепторов в результате местной гипоксии, вызванной уменьшением в них кровотока. Учашение дыхания возникает пи повышении давления крови в малом круге кровообращения и при растяжении левого предсердия.

На работу дыхательного центра оказывает влияние афферентация от периферических и центральных терморецепторов, особенно при резких и внезапных температурных воздействиях на рецепторы кожи. Погружение человека в холодную воду, например, тормозит выдох, в результате чего возникает затяжной вдох. У животных, у которых отсутствуют потовые железы (например, у собаки), с повышением температуры внешней среды и ухудшением теплоотдачи увеличива­ется вентиляция легких за счет учашения дыхания (температурное полипное) и усиливается испарение воды через систему дыхания.

Рефлекторные влияния на дыхательный центр весьма обширны, и практически все рецепторные зоны при их раздражении изменяют дыхание. Эта особенность рефлекторной регуляции дыхания отража­ет общий принцип нейронной организации ретикулярной формации ствола мозга, в состав которой входит и дыхательный центр. Ней­роны ретикулярной формации, в том числе и дыхательные нейроны, имеют обильные коллатерали почти от всех афферентных систем организма, что и обеспечивает, в частности, разносторонние реф­лекторные влияния на дыхательный центр. На деятельности нейро­нов дыхательного центра отражается большое количество различных неспецифических рефлекторных влияний. Так, болевые раздражения сопровождаются немедленным изменением дыхательной ритмики. Функция дыхания теснейшим образом связана с эмоциональными процессами: почти все эмоциональные проявления человека сопро­вождаются изменением функции дыхания; смех, плач — это изме­ненные дыхательные движения.

В дыхательный центр продолговатого мозга непосредственно по­ступает импульсация от рецепторов легких и рецепторов крупных сосудов, т.е. рецептивных зон, раздражение которых имеет особенно существенное значение для регуляции внешнего дыхания. Однако,

373


для адекватного приспособления функции дыхания к меняющимся условиям существования организма система регуляции должна обла­дать полной информацией о том, что происходит в организме и в окружающей среде. Поэтому для регуляции дыхания имеют значение все афферентные сигналы от разнообразных рецептивных полей ор­ганизма. Однако, вся эта сигнализация поступает не непосредствен­но в дыхательный центр продолговатого мозга, а в различные уров­ни головного мозга (рис.8.10), и от них непосредственно может передаваться как на дыхательную, так и на другие функциональные системы. Различные центры головного мозга образуют с дыхатель­ным центром функционально подвижные ассоциации, обеспечива­ющие полноценное регулирование дыхательной функции.

Рис.8.10. Схема организации центрального аппарата регуляции дыхания.

Стрелками обозначены пути передачи регулирующих влияний к дыхательному центру продолговатого мозга.


Как видно на рис. 8.10, в центральный механизм, регулирующий дыхание, включены разные уровни ЦНС. Значение для регуляции дыхания структур стволовой части мозга, в том числе варолиевого моста, среднего мозга, заключается в том, что эти отделы ЦНС получают и переключают на дыхательный центр проприоцептивную и интероцептивную сигнализацию, а промежуточный мозг — сигнали­зацию об обмене веществ. Кора больших полушарий, как централь­ная станция анализаторных систем, вбирает и обрабатывает сигналы от всех органов и систем, делая возможным адекватное приспособ­ление различных функциональных систем, в том числе и дыхания, к тончайшим изменениям жизнедеятельности организма.

Своеобразие функции внешнего дыхания заключается в том, что она в одной и той же мере и автоматическая, и произвольно уп­равляемая. Человек прекрасно дышит во сне и под наркозом; у животных дыхание сохраняет практически нормальный характер даже после удаления всего переднего мозга. В то же время любой чело­век может произвольно, хотя и ненадолго, остановить дыхание или изменить его глубину и частоту. Произвольное управление дыханием основано на наличии в коре больших полушарий представительства дыхательных мышц и наличии корковомедуллярных нисходящих ак­тивирующих и тормозных влияний на эфферентную часть дыхатель­ного центра. Возможность произвольного управления дыханием ог­раничена определенными пределами изменений напряжения кисло­рода и углекислоты, а также рН крови. При чрезмерной произво­льной задержке дыхания или резком отклонении фактического ми­нутного объема вентиляции от физиологически обоснованного воз­никает стимул, который возвращает дыхание под контроль дыха­тельного центра, преодолевая корковое влияние.

Роль коры головного мозга в регуляции дыхания показана в экс­периментах на животных с электрическим раздражением различных зон больших полушарий, а также с их удалением. Оказалось, что стоит лишь бескорковому животному в течение 1-2 мин сделать несколько шагов, как у него начинается резко выраженная и дли­тельная одышка, т.е. значительное учащение и усиление дыхания. Следовательно, если требуется приспособление дыхания к условиям внешней среды, например при мышечной деятельности, необходимо участие высших отделов центральной нервной системы. Бескорковые животные сохраняют равномерное дыхание лишь в состоянии пол­ного покоя и теряют способность к адаптации дыхания к измене­ниям внешней среды при мышечной работе.

Влияние коры головного мозга на дыхание у человека проявля­ется, например, в усилении дыхания еще в стартовых условиях перед выполнением мышечных усилий, сразу после команды "пригото­виться". Дыхание усиливается у человека непосредственно после начала движений, когда образующиеся при мышечной работе гумо­ральные вещества еще не достигли дыхательного центра. Следова­тельно, усиление дыхания в самом начале мышечной работы обу­словлено рефлекторными воздействиями, повышающими возбудимость дыхательного центра.

375


Кортикальные влияния на дыхание отчетливо проявляются при тренировке к выполнению одной и той же работы: при этом про­исходит постепенное развитие и совершенствование адекватных для данной работы функциональных взаимосвязей между мышечной ра­ботой и дыханием. На это указывает динамика изменения внешнего дыхания в процессе, например, тренировки к работе на велоэрго-метре с переменной интенсивностью. Если темп работы постоянен, а ее интенсивность периодически меняется по заранее составленно­му графику, то по мере тренировки с такой программой средний уровень легочной вентиляции снижается, но изменение вентиляции при переключении на новый уровень интенсивности наступает бы­стрее. Следовательно, в результате тренировки к работе переменной интенсивности развивается способность к более быстрому переклю­чению деятельности дыхательного аппарата на новый уровень функ­циональной активности, адекватной новым условиям работы. Лучшая согласованность во времени процессов координации функции внеш­него дыхания при переходе от одних условий работы к другим связана с функциональной перестройкой высших отделов ЦНС. В результате этого, по мере тренировки к мышечной работе колебания объема дыхания становятся меньше и дыхание делается более ров­ным. Выработанный, таким образом, динамический стереотип про­является в том, что при переходе к работе с постоянной интенсив­ностью вентиляция легких имеет выраженный волнообразный характер.

Роль высших отделов ЦНС в регуляции дыхания у человека про­является не только в его способности произвольно менять темп, ритм и амплитуду дыхательных движения, но и в его способности к "сознательному" восприятию своего гипоксического, либо гипер-капнического состояния.

Человек не может непосредственно воспринимать содержание кислорода и углекислого газа во вдыхаемом воздухе в силу отсут­ствия адекватных рецепторов в дыхательных путях и легких. Однако, с помощью метода активного выбора предпочитаемых дыхательных смесей (так называемый газопреферендум) показано, что люди избе­гают дышать газовыми смесями, которые вызывают в организме гипоксические или гиперкапнические сдвиги. Например, человеку предлагали выбрать одну из двух поочередно вдыхаемых смесей газов с разным, неизвестным ему содержанием кислорода. В таких усло­виях смеси, содержавшие 15% О2 и более, люди еще не отличали от обычного воздуха, 12%-е содержание кислорода вызывало у час­ти людей уже отрицательную реакцию, а смесь с 9% кислорода отвергалась почти всеми испытуемыми. Аналогичным образом чело­век, избегал дышать смесями, обогащенными углекислым газом.

Исследования на спортсменах выявили их способность оценивать гипоксические и гиперкапнические сдвиги в своем организме не только при вдыхании соответствующих газов, но и при интенсивной мышечной деятельности. В частности, после спортивной тренировки исследуемые могли по своим ощущениям почти точно определять степень оксигенации собственной артериальной крови.

376


При дыхании газовыми смесями, имеющими физиологически не­адекватный состав, человек независимо от интенсивности развива­ющейся гипервентиляции иногда заявляет, что ему "трудно дышать", т.е. жалуется на одышку. Ощущение одышки является отражением рассогласования между хеморецептивной сигнализацией и другими звеньями рефлекторной регуляции дыхания, в том числе обратной афферентацией, исходящей из работающей дыхательной мускулатуры. Такого рода ощущения лежат в основе самоконтроля резервной работоспособности при выполнении человеком значительной мы­шечной нагрузки.








Дата добавления: 2016-03-27; просмотров: 1302;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.