Закон Стефана — Больцмана. 1 страница

Плотность потока собственного интегрального излучения абсолютно черного тела можно найти на осно­вании закона Планка как суммарную энергию излучения тела по всем длинам волн

 

 

 

В результате интегрирования найдём

 

 

 

где с0=5,67 Вт/(м2·К4) — коэффициент излучения абсолютно черного тела. Индекс «0» указывает на то, что рассматривается излучение абсолютно черного тела.

Этот закон опытным путем найден Стефаном и теоретически обоснован Больцманом задолго до установления закона Планка.

Спектры излучения реальных тел отличны от спектра излучения абсолютно черного тела. При этом спектральная интенсивность излучения тела на любой длине волны никогда не превышает соответствующую спектральную интенсивность излучения абсолютно черного тела. В случае селективного спектра излучения на некоторых участках длин волн интенсивность излучения равна нулю. Частным случаем реальных тел являются серые тела, спектр излучения которых подобен спектру излучения абсолютно черного тела. Интенсивность излучения для каждой длины волны серого тела Jλ составляет одну и ту же долю интенсивности излучения черного тела J, то есть

 

Здесь величина ε — степень черноты тела, зависящая от физических свойств тела, но всегда ε < 1.

Большинство реальных тел с определенной степенью точности можно считать серыми. Закон Стефана — Больцмана для серого тела с учетом выражения (11.15) имеет вид:

 

где с — коэффициент излучения серого тела.

Закон Кирхгофа

 

Рассмотрим две параллельные поверхности, одна из которых абсолютно черная с температурой Т0, вторая серая с температурой Т и поглощающей способностью A. Расстояние между поверхностями настолько близко, что испускаемые каждой поверхностью лучи обязательно попадают на противоположную. Серая стенка излучает энергию Е и поглощает часть излучаемой черным телом энергии А·E0. Излучаемая серым телом энергия Е и отраженная им энергия (1—А)·E0 попадают на черное тело и поглощаются им.

Результирующее излучение серого тела qр—А·E0. При Т0=Т, qр=0, отсюда

 

Отношение излучающей способности серого тела к его поглощающей способности при температурном равновесии не зависит от природы тела и равно энергии излучения абсолютно черного тела при той же температуре. Этот закон справедлив и для монохроматического излучения:

 

 

Здесь Аλ — поглощающая способность в узком интервале длин волн. Следовательно, тело, излучающее энергию при какой-либо длине волны, способно поглощать ее при этой же длине волны.

На основании равенства можно записать Е=А·E0. Однако Е=ε·E0. Таким образом, из закона Кирхгофа также следует, что поглощающая способность серого тела численно равна степени его черноты, то есть А=ε.

 

Закон Ламберта

Определяет изменение энергии излучения по отдельным направлениям. Поток излучения абсолютно черного тела в данном направлении, характеризуемый величиной Jφ, пропорционален потоку излучения в направлении нормали к поверхности Jн и косинусу угла между ними, то есть

 

11.3.Теплообмен излучением между телами, разделёнными прозрачной средой

На основании закона лучистого теплообмена можно вывести расчетные уравнения для лучистого теплообмена между твердыми телами. Рассмотрим теплообмен излучением между двумя параллельными пластинами (серыми телами) неограниченных размеров, разделенными прозрачной средой. Для каждой поверхности заданы постоянные во времени температуры Т1 и Т2 (Т12), поглощающие способности тел А1 и А2. Выведем формулу для определения количества теплоты q12, передаваемой от первой пластины ко второй. Падающий на первую пластину лучистый поток равен эффективному излучению второй пластины Еэф2. Тогда плотность потока результирующего излучения

В свою очередь

 

 

 

 

При установившемся режиме результирующие потоки для первой и второй пластин одинаковы по величине и противоположны по знаку, т. е. q12=—q21. Подставив значения эффективных излучений в уравнение (11.22), получаем

Отсюда

 

Согласно законам Кирхгофа и Стефана—Больцмана получим,

 

 

Окончательно получим

 

где

называют приведенной поглощающей способностью системы.

 

Излучение газов

Одно- и двухатомные газы практически прозрачны для теплового излучения. Значительной излучающей и поглощающей способностью, имеющей практическое значение, обладают трех- и многоатомные газы. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар, образующийся при горении топлива. В отличие от твердых тел, имеющих в большинстве сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн Δλ, называемых полосами спектра. Для лучей других длин волн вне этих полос газы прозрачны, и их энергия излу­чения равна нулю. Таким образом, излучение и поглощение газов имеют избирательный характер. Если поглощение и излучение энергии в твердых телах происходят в тонком поверхностном слое, то газы излучают и поглощают энергию во всем объеме. Количество поглощаемой газом энергии зависит от числа находящихся в данном объеме микрочастиц газа. Последнее пропорционально толщине газового слоя, характеризуемой длиной пути луча l, парциальному давлению газа р и его температуре Т. Следовательно,

 

Тогда в соответствии с законом Кирхгофа

 

Для каждой полосы спектра

 

Плотность интегрального излучения газовой среды определится суммой их значений для отдельных полос, то есть

 

 

Плотность интегрального излучения для двуокиси углерода и во­дяного пара по опытным данным:

 

 

Отсюда следует, что законы излучения газов значительно отклоняются от закона Стефана — Больцмана. Однако в основу практических расчетов излучения газов положен именно этот закон. В итоге плотность интегрального излучения с поверхности газового слоя определяется уравнением

 

где εг — степень черноты газового слоя, зависящая от температуры, давления и толщины слоя газа.

Для Н2О и СО2 значения εг приводятся в виде номограмм, удобных для практических расчетов. Степень черноты газовых смесей определится как сумма степеней черноты отдельных компонентов. Плотность лучистого потока, передаваемого от газа к окружающим его стенкам (оболочке), вычисляется по уравнению

 

 

где εг — степень черноты газа при температуре газа Тг; Аг — поглощающая способность газа при температуре оболочки Тст; — эффективная степень черноты оболочки.

 

СЛОЖНЫЙ ТЕПЛООБМЕН

 

В действительных условиях работы различных теплообменных устройств теплота передается одновременно теплопроводностью, конвекцией и излучением. Такое явление называется сложным теплообменом.

Например, в газоходах паровых котлов теплота передается не только излучением, но и конвекцией. В этом случае суммарный тепловой поток

 

 

Если в качестве основного процесса теплообмена принято тепловое излучение, то

 

 

Перенос теплоты конвекцией здесь учитывается увеличением приведенной степени черноты системы за счет

 

 

В тех случаях, когда конвективная составляющая теплового потока значительно превышает лучистую составляющую, в качестве основного процесса принимается конвекция и тепловой поток определяется уравнением:

 

 

где

Теплопередача через плоскую стенку

Передача теплоты от одной подвижной среды (жидкости или газа) к другой через разделяющую их твердую стенку любой формы называется теплопередачей.

Примером теплопередачи служит перенос теплоты от дымовых газов к воде через стенки труб парового котла, включающий в себя конвективную теплоотдачу от горячих дымовых газов к внешней стенке, теплопроводность в стенке и конвективную теплоотдачу от внутренней поверхности стенки к воде.

Особенности протекания процесса на границах стенки при теплопередаче характеризуются граничными условиями третьего рода, которые задаются температурами жидкости с одной и другой стороны стенки, а также соответствующими значениями коэффициентов теплоотдачи.

Рис. 12.1. Теплопередача через плоскую стенку

Рассмотрим процесс теплопередачи через однородную плоскую стенку толщиной δ (рис. 12.1). Заданы: коэффициент теплопроводности стенки λ, температуры окружающей среды tж1 и tж2, коэффициенты теплоотдачи α1 и α2. Необходимо найти тепловой поток от горячей жидкости к холодной и температуры на поверхностях стенки tс1 и tс2. Плотность теплового потока от горячей среды к стенке определится уравнением

При стационарном режиме этот же тепловой поток пройдет путем теплопроводности через твердую стенку и будет передан от второй поверхности стенки к холодной среде за счет теплоотдачи:

 

 

Перепишем приведенные уравнения в виде:

 

 

 

 

Складывая левые и правые части полученных равенств, запишем

 

 

Отсюда

 

где

 

Величина k называется коэффициентом теплопередачи, который выражает количество теплоты, проходящее через единицу поверхности стенки в единицу времени при разности температур между горячей холодной и горячей жидкостью, равной 1К (размерность Вт/(м2·К)).

Величина обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи

 

 

Величины

и

 

 

называются термическими сопротивлениями теплоотдачи. Температуры на поверхностях однородной стенки определяются из уравнений:

 

 

Интенсификация теплопередачи

При неизменной разности температур между горячим и холодным теплоносителями передаваемый тепловой поток зависит от коэффициента теплопередачи. Так как теплопередача представляет собой сложное явление, рассмотрение путей ее интенсификации связано с анализом частных составляющих процесса. В случае плоской стенки

 

Увеличение k может быть достигнуто за счет уменьшения толщины стенки и выбора более теплопроводного материала. Если термическое сопротивление теплопроводности стенки мало, то при

 

 

Отсюда видно, что коэффициент теплопередачи всегда меньше самого малого из коэффициентов теплоотдачи. Следовательно, для увеличения коэффициента теплопередачи нужно увеличивать наименьшее из значений коэффициентов теплоотдачи α1 или α2. Если α1»α2, то необходимо увеличивать и α1 и α2 одновременно.

Если увеличить наименьший коэффициент теплоотдачи не удается, теплообмен можно интенсифицировать путем оребрения стенки со стороны меньшего коэффициента теплоотдачи.

 

Теплообменные аппараты

Теплообменными аппаратами называются устройства, предназначенные для передачи теплоты от одного теплоносителя к другому.

В зависимости от способа передачи теплоты они бывают контактными и поверхностными.

Рис. 2 Схема регенератора с неподвижной насадкой

В контактных (смесительных) аппаратах теплообмен осуществляется путем непосредственного соприкосновения и смешения горячей и холодной жидкости. Эти аппараты применяются главным образом для охлаждения и нагревания газов водой или охлаждения воды воздухом. В них теплообмен сопровождается массообменном.

Одним из основных параметров, определяющих интенсивность процесса в смесительных аппаратах, является величина поверхности соприкосновения теплоносителей. Для увеличения этой поверхности поступающая в аппарат жидкость распыляется на мелкие капли с помощью специальных форсунок. К смесительным аппаратам относятся скрубберы, градирни, струйные теплообменники.

Поверхностные теплообменные аппараты разделяются на регенеративные и рекуперативные. В регенеративных - теплота горячих газов сначала аккумулируется в теплоемкой насадке (кирпичах, керамической сыпучей массе, металлических листах, шарах). Затем передается нагреваемому газу (воздуху) путем его продувания через горячую насадку.

Схема регенератора с неподвижной насадкой приведена на рис. 2. Непрерывный процесс теплопередачи между теплоносителями по этой схеме осуществляется с помощью двух регенераторов: когда в одном из них происходит охлаждение горячего теплоносителя, в другом нагревается холодный теплоноситель. Затем аппараты переключаются с помощью клапанов 1 и 2, после чего в каждом из них процесс теплопередачи протекает в обратном направлении.

В рекуперативных аппаратах теплота от горячего теплоносителя передается холодному через разделяющую стенку. К таким аппаратам относятся паровые котлы, подогреватели, конденсаторы.

Схема простейшего кожухотрубного рекуперативного теплообменника приведена на рис. 3. Кожухотрубные теплообменники состоят из пучка труб 3, концы которых закреплены в специальных трубных решетках 2. Пучок труб расположен внутри общего кожуха 1, причем один из теплоносителей A движется по трубам, а другой B — в пространстве между кожухом и трубами (межтрубном пространстве). Движение жидкости в теплообменных аппаратах осуществляется по трем основным схемам: прямотока, противотока и перекрестного тока. В схеме прямотока горячая и холодная жидкость движутся параллельно в одном направлении, а в схеме противотока — в противоположных направлениях. В схеме перекрестного тока движение одного теплоносителя перпендикулярно движению другого. На практике встречаются более сложные схемы, включающие различные комбинации основных схем.

Рис. 3 Схема кожухотрубного рекуперативного теплообменника

 

Конструкторский и поверочный расчёт теплообменных аппаратов

Тепловой расчет теплообменного аппарата может быть проектным, целью которого является определение поверхности теплообмена, и поверочным, в результате которого при известной поверхности нагрева определяются количество передаваемой теплоты и конечные температуры теплоносителей. В обоих случаях основными расчетными уравнениями являются:

а) уравнение теплопередачи -

 

(12.11)

 

в) уравнение теплового баланса, которое при условии отсутствия тепловых потерь имеет вид:

где G — массовый расход теплоносителя, кг/с; i — удельная энтальпия, Дж/кг. Здесь и далее индексы 1, 2 относятся соответственно к горячей и холодной жидкостям, индексы ', " — к параметрам жидкости на входе в аппарат и на выходе из него. Полагая, что cр=const, уравнение теплового баланса можно записать так:

 

Величина представляет собой полную теплоемкость массового расхода теплоносителя в единицу времени и называется расходной теплоемкостью, или водяным эквивалентом.

G·ср

Из уравнения следует:

 

 

то есть в теплообменных аппаратах температуры горячей и холодной жидкостей изменяются пропорционально их расходным теплоемкостям. В общем случае температуры жидкостей внутри теплообменника не остаются постоянными. Поэтому уравнение теплопередачи (12.11) справедливо лишь для элемента поверхности теплообмена dF, то есть

 

Общий тепловой поток через поверхность теплообмена F определяется как интеграл

 

Коэффициент теплопередачи k в большинстве случаев изменяется вдоль поверхности теплообмена незначительно, и его можно принять постоянным. Тогда

 

где Δt — среднее значение температурного напора по всей поверхности нагрева.

Рис. 4 Характер изменения температур рабочих тел при прямотоке

Для некоторых простых схем теплооб-менных аппаратов вели-чина среднего темпера-турного напора может быть определена анали-тическим путем.

Рассмотрим теплооб-менный аппарат, рабо-тающий по схеме пря-мотока (рис. 4). Тепловой поток, передаваемый через элемент поверх-ности dF, определится уравнением теплопе-редачи

При этом температура горячей жидкости понизится на dtж1, а холодной - повысится на dtж2. Следовательно

 

Отсюда

(12.18)

 

 

Изменение температурного напора при этом определится уравнением

 

 

(12.19)

 

где .

Подставив в уравнение (12.19) значение dQ из (12.16), получаем

(12.20)


Обозначив tж1—tж2=Δti, перепишем (12.20) в виде:

 

(12.21)


Интегрируя при постоянных m и k, получаем

 

или

(12.22)


где Δt’=t’ж1—t’ж2 и Δt”=t”ж1—t”ж2 температурные напоры на входе и выходе из теплообменного аппарата.

Перепишем уравнение (12.22) в виде:

 

. (12.23)

 


Из (12.13) и (12.14) найдём

 

и .  


Подставим найденные значения C1 и C2 в (12.23) и получим:

 

 


 


Тогда

(12.24)


Однако Q=k·F·Δt. Поэтому

 

(12.25)


Полученное значение температурного напора называется среднелогарифмическим.

Точно также выводится формула для среднего температурного напора аппарата с противотоком (рис. 12.5).

Рис. 12.5. Характер изменения температур рабочих тел при противотоке

Зная величины Δt, Q и k, можно

вычислить поверхность

теплообмена:

. (12.26)

 

Сравнение средних температурных напоров показывает, что при одинаковых температурах теплоносителей на входе и выходе из аппарата наибольший температурный напор получается в теплообменнике с противотоком, наименьший — с прямотоком. Благодаря большей величине среднего температурного напора рабочая поверхность теплообменника с противотоком оказывается меньшей, чем с прямотоком. Следует отметить, что в тех случаях, когда расходная теплоемкость одного из теплоносителей значительно отличается от другого, или когда средний температурный напор значительно превышает изменение температуры одного из теплоносителей, обе схемы будут равноценны.

При поверочном расчете теплообменников поверхность теплообмена задана.

Известны также начальные температуры жидкостей и их расходные теплоемкости. Искомыми являются конечные температуры и передаваемый тепловой поток. В приближенных расчетах принимают, что температуры рабочих жидкостей изменяются по линейному закону. В точных расчётах используют метод последовательных приближений. Сущность этого метода заключается в следующем. Задаются температурой tж1 горячей жидкости на выходе из теплообменного аппарата и из (12.13) находят передаваемый тепловой поток и температуру tж2 холодной жидкости на выходе из теплообменного аппарата.

(12.27)


Затем определяют значение Q из (12.24). Если значение Q, определённое из (12.24), оказывается большим его же значения, рассчитанного с помощью выражения (12.13), значение tж1 уменьшают и повторяют расчёт. В противном случае tж1 увеличивают и снова повторяют расчёт. Эту процедуру продолжают до тех пор, пока последующее значение Q не будет отличаться от предыдущего на некоторую заранее заданную величину. Например, на величину, не превышающую одного процента предыдущего значения Q

 

Тема 13. ТОПЛИВО И ЕГО ХАРАКТЕРИСТИКИ

 

13.1.Виды топлива и их особенности

Энергетическим топливом называются горючие вещества, которые экономически целесообразно использовать для получения в промышленных целях больших количеств тепла. Основными его видами являются органические топлива: торф, горючие сланцы, угли, природный газ, продукты переработки нефти.








Дата добавления: 2016-03-27; просмотров: 2262;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.079 сек.