Температурные шкалы.

Температурные шкалы Возможность измерять температуру термометром основывается на явлении теплового обмена между телами с различной степенью нагретости и на изменении термометрических (физических) свойств веществ при нагревании. Следовательно, для создания термометра и построения температурной шкалы, казалось бы, возможно выбрать любое термометрическое свойство, характеризующее состояние того или иного вещества и на основании его изменений построить шкалу температур. Однако сделать такой выбор не так легко, так как термометрическое свойство должно однозначно изменяться с измене­нием температуры, не зависеть от других факторов и допускать возможность измерения его изменений сравнительно простым и удобным способом. В действительности нет ни одного термометрического свойства, которое бы в полной мере могло удовлетворить этим требованиям во всем интервале измеряемых температур.

Воспользуемся, например, для измерения температуры объем­ным расширением тел при нагревании и возьмем ртутный и спирто­вой термометры обычного типа. Если шкалы их между точками, соот­ветствующими температурам кипения воды и таяния льда при нор­мальном атмосферном давлении, разделить на 100 равных частей (считая за 0 точку таяния льда), то очевидно, что показания обоих термометров — ртутного и спиртового — будут одинаковы в точках 0 и 100, потому что эти температурные точки были приняты за исходные для получения основного интервала шкалы. Если этими термометрами будем измерять одинаковую температуру какой-либо среды не в этих точках, то показания их будут различны, так как коэффициенты объемного теплового расширения ртути и спирта различно зависят от температуры.

В жидкостно-стеклянных термометрах, применяемых в настоящее время, не приходится сталкиваться с таким расхождением показа­ний, так как на всех современных термометрах нанесена единая Международная практическая температурная шкала, строящаяся по совершенно другому принципу (способ построения этой шкалы изложен ниже).

Мы встретились бы с теми же затруднениями, если бы попытались осуществить температурную шкалу на основе какой-либо дру­гой физической величины, например электрического сопротивления металлов и т. д.

Таким образом, измеряя температуру по шкале, построенной на произвольном допущении линейной зависимости между свойством термометрического тела и температурой, мы еще не достигаем одно­значного численного измерения температур. Поэтому так изме­ренную температуру (т. е. по объемному расширению некоторых жидкостей, по электрическому сопротивлению металлов и т. д.) обычно называют условной, а шкалу, по которой она измеряется— условной шкалой.

Следует отметить, что из числа старых условных температурных шкал наибольшее распространение получила стоградусная темпера­турная шкала Цельсия, градус которой равен сотой части основного температурного интервала. За основные точки этой шкалы приняты точка плавления льда (0) и точка кипения воды (100) при нормаль­ном атмосферном давлении.

В целях дальнейшего усовершенствования условной температурной шкалы проводились работы по изучению возможности использования для измерения температур газового термометра. Для изготовления газовых термометров воспользовались реальными га­зами (водородом, гелием и другими) и при этом такими из них, которые по своим свойствам сравнительно мало отличаются от идеального.

Путь к созданию единой температурной шкалы, не связанной с какими-либо частными термометрическими свойствами и пригодной в широком интервале температур, был найден в использовании за­конов термодинамики. Независимой от свойств термометрического вещества является шкала, основанная на втором законе термодина­мики. Она предложена в середине прошлого века Кельвином и получила название термодинамической температурной Шкалы.

Термодинамическая температурная шкала Кельвина явилась ис­ходной шкалой для построения температурных шкал, не зависящих от свойств термометрического вещества. В этой шкале интервал, заключающийся между точкой таяния льда и точкой кипения воды (для сохранения преемственности со стоградусной температурной шкалой Цельсия), был разделен на 100 равных частей.

Д. И. Менделеев в 1874 г. впервые научно обосновал целесооб­разность построения термодинамической температурной шкалы не по двум реперным точкам, а по одной. Такая шкала имеет значительные преимущества и позволяет определять термодина­мическую температуру точнее, чем шкала с двумя реперными точками.

Однако термодинамическая температурная шкала, являющаяся чисто теоретической, не открывала еще в первое время путей ее практического использования. Для этой цели необходимо было установить связь термодинамической шкалы с реальными приборами для измерения температур. Из числа измерителей температуры наибольшее внимание заслуживают газовые термометры, показания которых могут быть связаны с термодинамической температурной шкалой посредством введения понятия шкалы идеального газа. Термодина­мическая шкала, как известно, совпадает со шкалой идеального газа, если принять при нормальном атмосферном давлении точку таяния льда за 0, а точку кипения воды за 100. Этой шкале было присвоено название стоградусной термодинамической температурной шкалы.

Однако газовые термометры могут быть использованы для воспроизведения термодинамической стоградусной температурной шкалы только до температур не выше 1200°С, что не может удовлетво­рить современным требованиям науки и техники. Использование же газовых термометров для более высоких температур встречает большие технические трудности, которые в настоящее время непреодолимы. Кроме того, газовые термометры являются довольно гро­моздкими и сложными приборами и для повседневных практических целей весьма неудобными. Вследствие этого для более удобного воспроизведения термодинамической стоградусной температурной шкалы в 1927 г. была принята практическая шкала, которая была названа Международной температурной шкалой 1927 г. (МТШ-27).

Положение о МТШ-27, принятое седьмой Генеральной конферен­цией по мерам и весам как временное, после некоторых уточнений было принято окончательно в 1933 г. восьмой Генеральной конфе­ренцией по мерам и весам. В СССР МТШ-27 введена с 1 октября 1934 г. Общесоюзным стандартом (ОСТ ВКС 6954).

В последующие годы производились работы по пересмотру МТШ-27 с целью осуществления более точного согласования с тер­модинамической шкалой в том виде, как она была принята, но с внесением в нее некоторых улучшений, основанных на уточненных и вновь полученных экспериментальных данных. В результате проведенных работ Консультативным комитетом по термометрии был выработан проект Положения о Международной практической тем­пературной шкале 1948 г. (МПТШ-48), утвержденный девятой Генеральной конференцией по мерам и весам.

Для шкалы с одной реперной точкой необходимо приписать определенное числовое значение единственной экспериментально реализуемой ее точке. Нижней границей температурного интервала будет служить тогда точка абсолютного нуля.

Предельная погрешность воспроизведения точки кипения воды составляет 0,01°С, точки таяния льда 0,001 °С. Тройная же точка воды, являющаяся точкой равновесия воды в твердой, жидкой и газообразной фазе, может быть воспроизведена в специальных сосудах с предельной погрешностью не больше 0,0001 °С.

Учитывая все это и рассмотрев тщательно все числовые резуль­таты, полученные в различных метрологических лабораториях ряда стран, Консультативный комитет по термометрии признал, что наилучшим значением для температуры тройной точки воды, лежащей выше точки таяния льда на 0,01°С, является значение 273,16 К. Десятая Генеральная конференция по мерам и весам в 1954 г. на основании этого установила термодинамическую темпе­ратурную шкалу с одной реперной точкой — тройной точкой воды.

Новое определение термодинамической температурной шкалы нашло отражение в «Положении о МПТШ-48. Редакция 1960 г.», принятом одиннадцатой Генеральной конференцией по мерам и ве­сам. Этой шкалой предусматривается применение двух температур­ных шкал: термодинамической температурной шкалы и практиче­ской температурной шкалы. Температура по каждой из этих шкал может быть выражена двояким способом: в градусах Кельвина (К) и в градусах Цельсия (°С) в зависимости от начала отсчета (положения нуля) по шкале.

В зарубежной литературе наряду с выражением температуры в Кельвинах (К) и градусах Цельсия (°С) используется иногда гра­дус Фаренгейта (°F) и градус Ренкина (°Р). Следует иметь в виду, что раньше градус Фаренгейта был характерен для шкал ртутно-стеклянных термометров, а в данное время, так же как и градус Цельсия, он обозначает, что температура выражена по МПТШ, но с другим числовым значением.

Единица кельвин определена как 1/273,16 часть термодинамиче­ской температуры тропкой точки воды. Градус Цельсия равен Кельвину. Температурные разности (интервалы) выражаются в Кельвинах, но могут быть выражены также в градусах Цельсия вместо ранее применявшегося обозначения град (deg).

 








Дата добавления: 2016-03-27; просмотров: 991;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.