АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ 2 страница

в) если в знаковом разряде суммы получился нуль, то сумма положительна и для перехода к естественной форме числа обратное преобразование не требуется. Если же в знаковом разряде суммы получилась единица, то сумма отрицательна и требуется обратное преобразование.


Пример 3. Выполним суммирование двоичных чисел = + 0,11001 и = – 0,01011 в обратном коде:

 

 

Результат получился положительным, т.е.

 


Пример 4. Выполним суммирование тех же двух двоичных чисел = + 0,11001 и = – 0,01011 в дополнительном коде:

 


Результат получился положительным и совпал с результатами суммирования в обратном коде и вычитания в естественной форме.

Пример 5. Поменяем знаки чисел и и выполним суммирование в дополнительном коде. Результат получится отрицательным и потребуется обратное преобразование.

 
 

 

При сложении чисел одного знака может произойти переполнение разрядной сетки, что приведет к искажению результата. На практике для выявления переполнения разрядной сетки применяют модифицированные машинные коды, в которых два знаковых разряда. Для положительных чисел в знаковых разрядах записывается 00, для отрицательных – 11. Появление комбинаций 01 или 10 в знаковых разрядах свидетельствует о переполнении разрядной сетки, т. е. является сигналом ошибки. Например, двоичное число X = – 0,1101 в модифицированном дополнительном коде будет записано следующим образом:

 

= 11.0011.

 

Пример 6. Выполним суммирование двух десятичных чисел = + 0,450 и = – 0,575 в двоичной СС с точностью пять знаков после запятой в дополнительном модифицированном коде и сравним результаты суммирования в двоичной и десятичной СС.

 
 

Так как | | > | |, то в естественной форме следует выполнить вычитание числа из числа и результату присвоить знак минус.

 

 
 

 

Результаты суммирования в естественной форме и дополнительном модифицированном коде совпадают.

 

Умножение двоичных чисел в цифровых устройствах производится по тем же правилам, что умножение десятичных чисел и делится на два этапа.

На первом этапе определяется знак произведения путем суммирования по модулю 2 знаковых разрядов сомножителей. Если знаковые разряды сомножителей одинаковы и равны 0 или 1, то сумма по модулю 2 равна 0 (произведение положительно), если же знаковые разряды сомножителей не совпадают, то эта сумма будет равна 1 (произведение отрицательно).

На втором этапе определяется абсолютное значение произведения путем перемножения этих чисел без учета знака (кодовое умножение). Для этого необходимо вычислить частичные произведения, затем сдвинуть их и сложить между собой.

 
 

Пример 1. Умножим целые положительные двоичные числа = 1101 и = 1011. Умножение выполним, начиная с младшего разряда множителя.

 

 

Суммирование частичных произведений осуществляется в несколько этапов, поскольку арифметическое устройство может выполнять операцию сложения сразу только с двумя числами.

Если умножение выполняется, начиная со старшего разряда множителя, то частичные произведения следует сдвигать вправо.

 

Особенности арифметических операций над двоичными числами с плавающей точкой

 

При сложении двоичных чисел с плавающей точкой операции производятся отдельно с мантиссами и порядками. Результат выполнения операции должен представляться в нормализованном виде, поэтому машинная операция сложения чисел с плавающей точкой распадается на четыре этапа:

а) выравниваются порядки слагаемых. Выравнивание порядков производится в сторону большего порядка, с тем чтобы при выравнивании не терять старшие разряды мантиссы. Мантисса преобразуемого числа сдвигается вправо на необходимое количество разрядов;

б) производится преобразование мантисс слагаемых в модифицированный дополнительный или обратный код;

в) мантиссы слагаемых суммируются по правилам сложения дробных чисел с фиксированной точкой;

г) производится нормализация суммы и округление мантиссы в случае необходимости.

Умножение двоичных чисел с плавающей точкой также производится в четыре этапа:

а) определение знака произведения путем сложения по модулю 2 знаковых разрядов мантисс сомножителей;

б) перемножение модулей мантисс по правилам для чисел с фиксированной точкой;

в) определение порядка произведения путем алгебраического сложения порядков сомножителей с использованием дополнительного либо обратного модифицированного кода;

г) нормализация результата и округление мантиссы в случае необходимости.

 

Сложение двоично-десятичных чисел

 

Десятичные числа в коде 8421 суммируются по правилам сложения десятичных чисел. Если в тетраде, представляющей десятичный разряд, содержится 10 или более единиц, т.е. возникло переполнение, то формируется единица переноса в старший десятичный разряд, а из суммы вычитается десять единиц. Полученный результат есть цифра соответствующего десятичного разряда суммы. Наличие переполнения тетрады выявляется по наличию переноса в соседнюю старшую тетраду либо по наличию единиц одновременно в разрядах с весовыми коэффициентами 8 и 4 либо 8 и 2 в полученной сумме. В этом случае требуется коррекция суммы. Поскольку в цифровых устройствах вычитание заменяется сложением в дополнительном коде, то вычитание десяти единиц заменяется прибавлением шести единиц, так как число является дополнительным кодом числа

 

Пример 1. Выполним сложение двух десятичных чисел = 458 и = 629 в десятичной СС и коде 8421 и сравним полученные результаты:

 

 
 

Десятичная система счисления

 

 

Код 8421

 


Результаты сложения в десятичной СС и коде 8421 совпадают. В младшей тетраде коррекция произведена из-за наличия единицы переноса во вторую тетраду. Следует помнить, что коррекция может выполняться в несколько этапов, если в процессе коррекции возникает переполнение.


Символьные коды

 

Символьные коды устанавливают соответствие букв, знаков препинания, десятичных цифр и других символов двоичным комбинациям. Эти коды можно использовать для хранения и обработки чисел, а также для ввода-вывода информации. Существуют различные символьные коды. Широкое применение получил американский стандартный код обмена информацией ASCII (American Standard Code for Information Interchange). Он является 7-разрядным и позволяет представить = 128 символов (представляется 96 символов и 32 команды обмена). К каждому символу добавляется один контрольный разряд для контроля символа на четность, т.е. символы передаются и хранятся в памяти в виде 8-разрядных слов.

Отечественным аналогом кода ASCII является код обмена информацией семиразрядный КОИ-7, который представлен в таблице 2.

 

Таблица 2 – Символьный код КОИ-7

 

Код символа в 16-ричной системе счисления
Младшая цифра Старшая цифра
Пробел @ P Ю П
! A Q А Я
« B R Б Р
# C S Ц С
¤ D T Д Т
% E U Е У
& F V Ф Ж
¢ G W Г В
( H X Х Ь
) I Y И Ы
A * : J Z Й З
B + ; K [ К Ш
C , < L \ Л Э
D = M ] М Щ
E . > N Ù Н Ч
F / ? O _ О Забой

 

Например, десятичная цифра 5 представляется кодом русская буква П – знак «+» – и т. д.

 


Структурные единицы и форматы цифровых данных

 

Данными называют информацию, представленную в виде пригодном для ее автоматизированной обработки.

В цифровых устройствах данные представляются в двоично-кодированной форме. Основными структурными единицами данных являются: бит, поле, байт, слово.

Бит (сокращение от англ. binary digit – двоичная цифра) – это такое количество информации, которое может быть записано в одном разряде разрядной сетки, например 0 или 1.

Последовательность битов, имеющая определенный смысл, называется полем (поле кода операции, поле адреса и т.д.).

Поле, состоящее из 8 битов, называется байтом (от англ. byte – слог, часть). Байт в цифровой технике используется для представления и записи любого символа, а также является наименьшей адресуемой единицей для записи и хранения данных в запоминающих устройствах. На основе байтов строятся любые другие укрупненные единицы данных (слово – 2 байта, двойное слово – 4 байта, учетверенное слово – 8 байт, килобайт – байт, мегабайт – байт, гигабайт – байт, терабайт – байт).

Словом называется последовательность, состоящая из строго определенного числа байтов, принятого для данного цифрового устройства.

На основе принятой структуры разнообразные данные организуются в соответствии со следующими форматами:

а) числовые данные с фиксированной точкой делятся на беззнаковые (например, адреса памяти) и обычные числа со знаком. Каждый тип данных может быть представлен в четырех форматах: наименьшем (один байт), коротком (одно слово), среднем (двойное слово), длинном (учетверенное слово);

б) для числовых данных с плавающей точкой используется три формата: короткий (4 байта, из них мантисса со знаком 3 байта, порядок со знаком 1 байт), средний (8 байт, из них мантисса со знаком 53 бит, порядок со знаком 11 бит), длинный (10 байт, из них мантисса со знаком 65 бит, порядок со знаком 15 бит);


в) для представления двоично-десятичных данных применяется два формата: упакованный и неупакованный;

В упакованном формате в каждом байте размещаются две десятичные цифры. Для знака отводится старшая тетрада старшего байта (для положительных чисел – 1100, для отрицательных – 1101). Упакованный формат используется для выполнения арифметических операций.

В неупакованном формате десятичные цифры кодируются в соответствии с американским стандартным кодом обмена информацией ASCII. При этом в каждом байте (в младшей тетраде) размещается только одна десятичная цифра, а в старшей тетраде записывается 0011 (в соответствии с кодом ASCII). Для знака числа отводится старший байт (для положительных чисел – для отрицательных – ). Неупакованный формат используется для обмена двоично-десятичными данными между процессором и внешними устройствами;

г) для представления и обработки текстовой информации используются специальные информационные структуры переменного формата – строки. Строка представляет непрерывную последовательность битов, байтов, слов или двойных слов. Битовая строка может быть длиной до 1 Гбита, а длина остальных строк может достигать 4 Гбайт.

 

 

ЛОГИЧЕСКИЕ ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ

 

Понятие о логических функциях, логических элементах и логических устройствах

 

Одна из причин широкого распространения ЭВМ заключается в том, что они могут решать не только арифметические, но и логические задачи. В противном случае эти машины играли бы только роль быстродействующих арифмометров и не могли бы использоваться для целей управления, поиска лучших вариантов решения и т.п. ЭВМ становятся «думающими» благодаря использованию алгебры логики. Как известно, логика – это наука о законах и формах мышления. Алгебра логики – это начальный раздел математической логики, которая занимается изучением возможностей применения формальных методов для решения логических задач. Иногда алгебру логики называют булевой алгеброй по имени английского математика Д. Буля, который еще в XIX в. разработал основные положения исчисления высказываний. В 40-е гг. XX в. алгебра логики нашла широкое применение при составлении и расчете сложных переключающих схем в автоматических телефонных станциях. Она широко применяется при анализе и синтезе различных цифровых узлов, а также при машинном решении логических задач.

Начальным понятием алгебры логики является понятие высказывания. Под высказыванием понимается любое утверждение, которое может быть истинным или ложным. Над высказыванием можно выполнять некоторые математические операции, так как каждое высказывание можно рассматривать как двоичную переменную. Примером двоичной переменной может служить значение какого-либо разряда двоичного числа, которое может быть нулем либо единицей. В соответствии с двоичной природой высказываний условились называть их логическими переменными и обозначать буквами латинского алфавита, приписывая им значение 1 в случае истинности и значение 0 в случае ложности, например и т.д.

Высказывания могут быть простыми и сложными. Простое высказывание содержит одну простую законченную мысль. Значение истинности простого высказывания не зависит от значений истинности каких-либо других высказываний. Сложным называется высказывание, значение истинности которого зависит от значений других высказываний. Следовательно, любое сложное высказывание можно считать логической (булевой) функцией некоторых двоичных аргументов – простых высказываний, входящих в его состав. Сложные высказывания также могут служить аргументами еще более сложных логических функций, т.е. при построении логических функций справедлив принцип суперпозиции. Отсюда следует, что можно построить логическую функцию любой сложности, пользуясь ограниченным числом логических связок (операций) и принципом суперпозиции.


Термин «логическая операция» означает простейшее действие над логическими аргументами, например логическое отрицание, логическое умножение и т.п.

Если логическая функция содержит только одну логическую операцию, то она называется элементарной.

Электрическая схема, реализующая элементарную логическую функцию называется логическим элементом.

Устройства, реализующие логические функции любой сложности, называются логическими или цифровыми.

 

Классификация логических устройств

 

В цифровой технике для обозначения различной информации пользуются кодовыми словами, которые представляют собой последовательность символов 0 и 1 (логических переменных), например: 10111011.

Цифровые устройства (либо их узлы) можно классифицировать по различным признакам.

По способу ввода и вывода кодовых слов различают логические устройства параллельного, последовательного и смешанного действия. В логических устройствах параллельного действия все n символов каждого входного слова подаются одновременно, т.е. в параллельном коде. В такой же форме на выходе образуется выходное слово. Очевидно, что в этом случае в устройстве необходимо иметь отдельный вход (выход) для каждого разряда входного (выходного) слова. В логических устройствах последовательного действия символы входного кодового слова поступают не одновременно, а последовательно во времени, символ за символом, т.е. в последовательном коде. В такой же последовательной форме выдается выходное слово. В логических устройствах смешанного действия входные и выходные кодовые слова представляются в различных формах. Такие устройства могут использоваться для преобразования кодовых слов из одной формы представления в другую.

По способу функционирования логические (цифровые) устройства (и их узлы) делятся на два класса: комбинационные цифровые устройства (КЦУ) и последовательностные цифровые устройства (ПЦУ). В КЦУ (цифровых автоматах без памяти) каждый символ на выходе определяется комбинацией символов на входах в текущий момент времени и не зависит от того, какие символы ранее действовали на этих входах, т.е. КЦУ не обладают памятью. В ПЦУ (цифровых автоматах с памятью) выходной сигнал определяется не только набором символов на входах в текущий момент времени, но и внутренним состоянием устройства, которое зависит от предыдущих значений символов на входах, т.е. ПЦУ обладают памятью.

 

Способы задания логических функций

 

Для задания логических функций используют два способа: табличный ианалитический.

При табличном способе строится таблица истинности, в которой приводятся все возможные значения наборов аргументов и значения логической функции, которые она принимает на каждом наборе. Число наборов аргументов N, т.е. число строк в таблице истинности, определяется по формуле где n – число аргументов. Например, таблица истинности для логических функций одного аргумента приведена в таблице 3. Существует всего четыре функции одного аргумента.

 

Таблица 3 – Таблица истинности для элементарных логических функций одного аргумента

 

Аргумент X Логические функции

 

При n = 2 число наборов значений аргументов равно а число функций Таблица истинности для логических функций двух аргументов представлена в таблице 4.

 


Таблица 4 – Таблица истинности для элементарных логических функций двух аргументов

 

Аргу­менты Функции

 

При аналитическом способе логическая функция записывается в форме логического выражения, показывающего, какие логические операции над аргументами функции и в какой последовательности должны выполняться, например:

 

(6)

 

Таблица истинности наиболее наглядно описывает функционирование некоторого логического устройства, но, чтобы построить логическую схему устройства, необходимо логическую функцию задать аналитическим способом.

 

Элементарные логические функции одного аргумента

 

Как отмечалось выше, для одного аргумента можно составить четыре элементарные логические функции. Логические функции одного аргумента (таблица 3) представляются следующими выражениями:

 

(7)

 

Логический элемент, реализующий функцию называется генератором нуля. Для формирования функции выход логического элемента подключается к общей точке схемы, т.е. к корпусу устройства (рисунок 2, а).


 

Рисунок 2 – Реализация элементарных логических функций одного аргумента (а) и (б)

 

Логический элемент, реализующий функцию называется генератором единицы. Для формирования функции выход логического элемента подключается к источнику питания, соответствующего логической единице (рисунок 2, б).

Логический элемент, реализующий функцию называется повторителем. Для формирования функции выход логического элемента соединяется со входом (рисунок 3, а). Условное графическое обозначение (УГО) повторителя по ГОСТ 2.743-91 ЕСКД и международный вариант представлены на рисунке 3, б и 3, в соответственно.








Дата добавления: 2016-03-22; просмотров: 1668;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.043 сек.