РЕКОНСТРУКЦИЯ ЖИЛОГО ФОНДА РАННИХ ПОСТРОЕК 2 страница
В процессе монтажа каркаса в местах примыкания ригелей и элементов перекрытия выполняются дополнительное армирование и омоноличивание. При омоноличивании образуется узел, обеспечивающий пространственную жесткость каркаса (рис 9.9).
Рис 9.9. Узлы сопряжения колонн с ригелями и элементами перекрытия
А - с использованием несъемной опалубки; Б - с перекрытием из многопустотного настила; 1 - колонны; 2 - ригели; 3 - несъемная опалубка из преднапряженных плит толщиной 60 мм; 4 - монолитная часть перекрытия; 5 - омоноличенный узел ригелей и колонны; 6 - хомут с подкосами; 7 - многопустотный преднапряженный настил перекрытия; 8 - монолитный участок
Ригели выполняются предварительно напряженными из бетонов класса В-30. Их ширина принимается равной ширине колонн примыкания, а высота рассчитывается в зависимости от воздействующих нагрузок (шага колонн, пролета и длины ригеля).
Омоноличивание плиты перекрытия в зоне сопряжения с ригелем создает тавровое рабочее сечение, где сборный ригель является ребром тавра, а его верхней полкой служит примыкающий участок плиты перекрытия.
Их изготовление осуществляется на длинных стендах с использованием предварительно напряженной канатной арматуры. Применение длинных стендов позволяет изготавливать широкую номенклатуру по длине, что обеспечивает их использование для зданий с различной шириной корпусов. В верхних зонах ригелей размещаются замкнутые хомуты, обеспечивающие связь со сборно-монолитной плитой перекрытия.
Сборно-монолитные перекрытия выполняются из несъемной железобетонной преднапряженной опалубки толщиной 60 мм, которая устанавливается на плоскость ригелей. Дополнительное армирование и шероховатость поверхности плит обеспечивают требуемую адгезию и однородность работы перекрытия по всей толщине.
Технологически эффективным является использование в качестве перекрытия преднапряженного многопустотного настила. Такое решение исключает использование в больших объемах монолитного бетона, что особенно актуально при реконструкции зданий в условиях пониженных и отрицательных температур.
Наиболее эффективно использование многопустотного настила, изготавливаемого по экструзионной технологии. Это позволяет получать требуемую длину изделий по резательной технологии с минимальными трудозатратами. В зависимости от нагрузок толщина плит перекрытий колеблется от 150 до 400 мм, что позволяет перекрывать пролеты до 20 м (рис 9.10).
Рис 9.10. Производство плит перекрытия по экструзионной технологии
а - общий вид укструдсра; б - номенклатура прсднапряженного железобетонного многопустотного настила; в - кривые несущей способности плит в зависимости от пролета
Использование длинных стендов (120-150 м) для изготовления колонн, предварительно напряженных ригелей и несъемной опалубки обеспечивает технологическую гибкость и способствует без переналадки бортоснастки получать широкую гамму сборных конструкций каркаса. При этом высокое качество изделий достигается путем применения бетоноукладчиков специальной конструкции, оптимальных режимов вибрационного уплотнения и тепловой обработки. Использование автоматизированных систем температурного контроля позволяет существенно повысить однородность физико-механических характеристик бетона и оптимизировать расход теплоносителя на прогрев конструкций.
На рис 9.11 приведены технологические линии по изготовлению несъемной опалубки, колонн и ригелей.
Рис. 9.11. Технология изготовления многоярусных колонн (а, б), преднапряженных ригелей (в, г) и несъемной опалубки (д, е) на длинных стендах
Повышение уровня надежности стеновых соединений достигается контролем технологических регламентов производства работ с использованием инструментальных средств.
Так, при омоноличивании стыков колонн с ригелями и плитами перекрытий используются бетонные смеси класса В-30. При укладке смесей осуществляется обязательное уплотнение глубинными вибраторами. При выполнении работ с отрицательной температурой наружного воздуха обеспечивается прогрев греющими проводами или стержневыми электродами. Для формирования однородного температурного поля открытые поверхности бетонной смеси утепляются. Строго выдерживается режим прогрева монолитных участков, что обеспечивает получение равнопрочных стыков.
Процесс возведения встроенных систем отличается от ранее рассмотренной схемы меньшей трудоемкостью работ за счет использования бессварных соединений колонн, ригелей и плит перекрытия, использования простейших подкосных систем для выверки и временного крепления колонн, применения крупногабаритных изделий, повышающих уровень технологичности и снижающих машиноемкость процессов.
§ 9.4. Реконструкция зданий с применением сборно-монолитных встроенных систем
Сочетание преимуществ сборного железобетона с монолитным реализуется с помощью возведения встроенных систем, у которых в монолитном варианте выполняются внутренние поперечные и продольные несущие стены, а перекрытия - из сборного предварительно напряженного многопустотного настила. В сборном варианте используются также лестничные площадки, марши, объемные блоки сантехкабин и лифтовых шахт. Использование большепролетных (до 18 м) плит перекрытий позволяет не только снизить удельный расход материалов, но и повысить технологичность строительных процессов, а также создать свободные планировочные объемы значительных размеров. В то же время использование сборных перекрытий позволяет без значительных технологических перерывов осуществлять их нагружение, что весьма важно при организации поточного производства работ. Применение внутренних монолитных стен позволяет реализовать практически любую высоту этажей реконструируемых зданий.
На рис. 9.12 приведена конструктивно-технологическая схема встроенной сборно-монолитной системы. Она включает: внутренние поперечные и продольные монолитные стены; пристеночные железобетонные диафрагмы торцевых элементов зданий; многопустотный настил перекрытия; сборные элементы лестничной клетки и др. Расположение внутренних несущих стен осуществляется таким образом, чтобы площадь перекрытия была максимальной и приближалась к размерам квартир. Это обстоятельство позволяет на любом этапе эксплуатации осуществлять перепланировку помещений.
Рис. 9.12. Сборно-монолитная встроенная система
1 - монолитные внутренние несущие стены; 2 - многопустотный настил перекрытий; 3 - сборные ж/б лестничные марши и площадки; 4 - пристеночная железобетонная диафрагма; 5 - лифтовая шахта
Цикл встройки сборно-монолитной системы состоит в устройстве фундаментов, возведении монолитных поперечных и продольных стен, монтаже плит перекрытия и других встроенных элементов. Монолитные стеновые конструкции выполняют функции несущих стен и обеспечивают пространственную жесткость встроенной системы. Взаимодействие ограждающих конструкций с поперечными стенами повышает их пространственную жесткость и в ряде случаев несущую способность. Продольная монолитная стена может выполняться отдельными участками, тем самым обеспечивая получение больших перекрываемых площадей. В любом случае как внутренние поперечные, так и продольные стены должны размещаться соосно по всей высоте начиная с подвальной части здания.
В зависимости от грунтовых условий фундаментами под встроенную систему могут служить перекрещивающиеся ленты, плиты сплошного или кессонного типа в монолитном исполнении.
Основным условием создания фундаментов является учет восприятия нагрузок как встраиваемой части здания, так и надстраиваемых этажей. При этом существующее стеновое ограждение становится самонесущим.
Процесс реконструктивных работ требует использования специальных средств механизации для выполнения цикла нулевых работ: возведения монолитных фундаментов под внутренние несущие стены, поэтажного устройства встроенной системы с использованием различных опалубочных систем, монтажа сборных конструкций междуэтажных перекрытий, объемных элементов сантехкабин, вентблоков и др.
Технология возведения вертикальных стеновых конструкций
Для возведения вертикальных стеновых конструкций наиболее рационально применение укрупненных опалубочных щитов системы Мева, Дока, алюминиевой опалубки ЦНИИОМТП и др. Их конструктивные особенности позволяют возводить внутренние стены с различной высотой этажа за счет использования доборных элементов. Сравнение опалубочных систем может быть оценено по уровню технологичности процессов укрупнения, сборки и демонтажа. Этот фактор определяется конструктивными особенностями замковых соединений, уровнем их надежности и трудоемкости выполнения работ. Наиболее важными показателями опалубочных систем являются обеспечение плотности стыковых соединений, исключение деформативности от действия гидростатического и динамического давления бетонной смеси, а также их оборачиваемость.
На рис. 9.13 приведены технологические схемы возведения монолитных конструкций, типы опалубочных систем и узлы взаимодействия наружных и внутренних стен с ограждающими конструкциями.
Рис. 9.13. Конструктивно-технологическая схема устройства встроенной сборно-монолитной системы с широким шагом внутренних стен (а), узлы взаимодействия наружных (б) и внутренних (в) стен с ограждающими конструкциями, укрупненные опалубочные щиты для возведения линейных участков (г) и при пересечении стен (д)
1 - опалубочный щит; 2 - плита перекрытия; 3 - анкеры из арматурной стали; 4 - распорные анкеры; 5 - существующая стена; 6 - крепежный элемент
Оснащение щитов системой подкосов обеспечивает быструю выверку в проектное положение, а наличие рабочих площадок создает удобства производства работ по укладке и уплотнению смесей.
При устройстве внутренних несущих стен подбор комплекта опалубки осуществляется таким образом, чтобы без переналадки щитов производить цикл возведения как по этажам здания, так и посекционно. Технологический процесс включает арматурные, опалубочные работы, подачу, укладку и уплотнение смесей, тепловую обработку для ускоренного набора прочности бетоном и демонтаж опалубки.
Выполнение арматурных работ наиболее рационально осуществлять из отдельных стержней с ручной вязкой. Такое решение исключает использование сварных соединений, что обеспечивает более высокую надежность монолитных конструкций. Для создания проектного геометрического положения армокаркасов используются различные системы фиксации в виде полимерных или бетонных фиксаторов. Их установка препятствует смещению арматурного заполнения в процессах укладки и уплотнения бетонных смесей и обеспечивает требуемый защитный слой.
Для создания планировочных решений при возведении внутренних стен предусматривается использование проемообразователей. Они устанавливаются на внутренней поверхности опалубочных щитов с использованием специальной системы крепления. Конструктивное решение проемообразователей обеспечивает их геометрическую изменяемость, что позволяет производить распалубку без нарушения торцевых элементов.
Бетонирование стен осуществляется по захваткам. Их длина определяется из условия непрерывной укладки смеси и составляет 10-12 м. Каждая захватка ограничивается разделительной сеткой, которая обеспечивает монолитность соединений отдельных элементов стен.
Укладка смеси осуществляется послойно с толщиной слоев 0,5-0,6 м с обязательным уплотнением глубинными вибраторами. Интенсивность подачи и укладки бетонной смеси должна соответствовать производительности глубинных вибраторов J £ Пв×n; J = v×ty; или где v - скорость подачи бетонной смеси, м3/ч; ty - время укладки смеси в опалубку; R - радиус действия вибратора; h - высота слоя бетонной смеси; tв - время уплотнения; кв - коэффициент, учитывающий потери времени на перестановку вибратора; п - количество вибраторов.
В зависимости от консистенции бетонной смеси время уплотнения может иметь различные значения. Оно определяется экспериментальным путем и оптимизируется в зависимости от подвижности бетонной смеси и толщины бетонируемой конструкции.
Повышение времени уплотнения может привести к расслоению смесей, а недостаточная продолжительность вибродействия - к неоднородному уплотнению слоев.
При бетонировании тонкостенных элементов необходимо использовать вибраторы с диаметром наконечника, не превышающим 1/3-1/4 толщины.
Использование укрупненных опалубочных щитов позволяет снизить трудоемкость и продолжительность работ. В зависимости от степени укрупнения повышаются технологичность опалубочных систем и более рациональное использование крана по грузоподъемности.
Технологические потоки возведения внутренних стен предусматривают ритмичное производство арматурных и опалубочных работ. При этом опережающим процессом являются арматурные работы. Обеспечение заданного ритма производства работ достигается подбором количества рабочих, занятых на армировании конструкций. Цикл арматурных работ на захватке должен соответствовать циклу опалубочных
где SТар, STon - суммарная трудоемкость арматурных и опалубочных работ; - нормативная трудоемкость арматурных и опалубочных работ; n1, n2 - количество рабочих, занятых на соответствующих процессах.
Оценка технологических циклов арматурных и опалубочных работ показывает, что их равенство может быть достигнуто путем определения расчетного состава рабочих, занятых на арматурных работах:
Наибольшую трудоемкость работ представляют процессы армирования и устройства опалубки торцевых стен, а также сопряжений с продольными стенами. Эти процессы требуют разработки специальной системы крепления как арматурного заполнения, так и опалубочных щитов.
Наиболее рациональным является устройство анкерных соединений, устанавливаемых в стенах. Количество распорных анкеров, их глубина установки и геометрические параметры определяются исходя из технологических нагрузок от укладки и уплотнения бетонной смеси и физико-механических характеристик стенового ограждения.
Анкер рассчитывается исходя из восприятия усилий от гидростатического и динамического давления бетонной смеси Рг.б + Рд.б. Усилие, воспринимаемое анкером от выдергивания, определяется исходя из физико-механических характеристик материала стен, диаметра анкера, глубины заделки h. Расчетное усилие на выдергивание за счет создания распора и сил трения может быть оценено по зависимости
где RСТ - фактическое сопротивление кладки стены; m1 - коэффициент условия работы (m1 = 1,2-1,3); Аб - площадь сечения стяжного элемента; f - коэффициент трения металла по камню {f » 0,3); mn - коэффициент надежности работы анкера, тп » 1,8-2,5; g - плотность бетонной смеси; Н - высота столба бетонной смеси; Рд - динамическая составляющая давления от работы вибраторов.
Глубина заделки анкеров зависит от физико-механических характеристик материала стен и составляет 4,0-6,0 Æ. Для стен из кирпича марки 75 диаметр анкера составляет 20 мм, глубина заложения 100-120 мм, с разрушающей нагрузкой 6-15 кН.
Большое влияние на качество последующих монтажных работ оказывает создание единого монтажного горизонта опорных поверхностей внутренних стен. Отклонения данных параметров могут привести к снижению опорных частей сборных плит и нарушению условий передачи нагрузки. Применение специальных бортовых элементов щитовой опалубки стен позволяет получать высокоточные опорные поверхности. Принцип создания таких элементов состоит в том, что при окончании цикла укладки бетонной смеси осуществляется поворот на 90° откидных бортовых элементов опалубки. В результате передачи энергии колебаний от вибратора бортовому элементу происходят перемещение избытка бетонной смеси в межпалубную зону и образование горизонтальной.
Использование таких приспособлений показало, что получение горизонтальных поверхностей обеспечивает высокую точность монтажа плит перекрытий, исключающую перепады, пропеллерность и другие дефекты, существенно снижающие качество потолочных поверхностей.
Интенсивность бетонных работ достигается путем снижения цикла набора распалубочной прочности за счет введения в бетонную смесь добавок Линголан-2 и тепловой обработки греющими проводами. Монтаж плит перекрытия осуществляется при наборе прочности не менее 50 % проектной.
Организация производства работ
Организация производства работ предусматривает создание ритмичных потоков, обеспечивающих их максимальное совмещение во времени. В качестве захватки принимается секция жилого дома. Ведущим процессом является цикл возведения монолитных конструкций. Из этого расчета подбирается комплект опалубки на секцию.
Технологические циклы производства работ приведены на рис. 9.14.
Рис. 9.14. Технологическая последовательность возведения встроенной сборно-монолитной системы при реконструкции 3-секционного жилого дома
Цифрами показана очередность выполнения работ: I - возведение монолитных стен; II - монтаж плит перекрытия, лестничных маршей и площадок; III - установка объемных блоков сантехкабин и лифтовых шахт
На первой захватке показан технологический этап возведения внутренних монолитных стен. Он состоит из процессов подготовки наружных и внутренних стен, устройства арматурного заполнения, установки опалубочных щитов, проемообразователей, системы крепления щитов к торцевым стенам, подачи и укладки бетонной смеси.
Комплекс монолитных работ осуществляется с использованием башенного крана. В связи с ограниченным объемом бетонных работ наиболее рациональными являются подача и укладка смеси по схеме «кран-бадья».
После приобретения распалубочной прочности осуществляются демонтаж опалубки и перестановка на прилегающую захватку.
Используется горизонтально восходящая схема производства работ, предусматривающая последовательное поэтажное выполнение работ монолитного цикла.
В зависимости от интенсивности набора прочности бетоном возможно использование двух комплектов опалубочных систем, что создает предпосылки непрерывного производства работ монтажного цикла.
На второй захватке приведены технологическая схема и последовательность монтажа сборных конструкций. Она включает устройство стыковых соединений плит перекрытия, лестничных маршей и площадок.
При выполнении монтажных работ особое внимание уделяется сохранению монтажного горизонта, омоноличиванию анкерных элементов плит перекрытия, заделке швов, сварным соединениям лестничных маршей и площадок.
На третьей захватке показаны технологические процессы монтажа объемных элементов лифтовых шахт, сантехкабин, вентиляционных блоков и др. Выполнение данного цикла работ связано с подготовкой площадок для монтажа объемных элементов, стыковых соединений и проектного геометрического положения каждого монтируемого элемента.
Окончание монтажного цикла работ на захватке дает основание для производства работ по устройству внутренних монолитных стен очередного этажа.
Ритмичность производства работ связана с непрерывным материально-техническим обеспечением строительных процессов: доставкой и складированием сборных конструкций, ритмичной подачей бетонной смеси, наличием расчетного количества опалубки, средств тепловой обработки, обеспеченностью рабочими кадрами требуемой квалификации и др.
Для выполнения цикла работ по устройству встроенной системы разрабатывается проект производства работ. Особое внимание уделяется технологическим картам, где отдельной позицией представляются материалы по контролю качества работ инструментальными средствами, подбору средств механизации и инвентаря, обеспечивающих интенсивное производство работ на всех этапах устройства встроенной системы.
Комплексная механизация технологических процессов требует создания необходимых условий на строительной площадке: размещения и привязки башенного крана, определения зон складирования сборных конструкций; площадок для приема бетонной смеси, по укрупнению опалубочных щитов, приему и складированию арматуры и др.
Для обеспечения нормальной работы технологических потоков устраивается сеть временных дорог, осваиваются площадки для размещения инвентарных зданий бытовой зоны, закрытые складские помещения и мастерские.
Перечисленные виды работ отражаются при формировании строительного генерального плана с соответствующими технологическими расчетами (рис. 9.15).
Рис. 9.15. Организация строительной площадки на основной период СМР
а - фрагмент стройгенплана; б - разрез на период надстройки этажей; узел «А» - схема наружных самонесущих стен из газосиликатных блоков с облицовкой из керамического кирпича: 1 - плита перекрытия; 2 - термовкладыш; 3 - газосиликатные блоки; 4 - облицовка из кирпича
Стесненность строительной площадки предусматривает размещение технологически необходимых средств механизации, приобъектной зоны, временных зданий, сетей и дорог.
При выполнении работ в условиях стесненной городской застройки особое внимание уделяется безопасным методам производства работ, выявлению опасных зон и разработке мероприятий по снижению негативного влияния на прилегающие территории жилой зоны.
Примерный график производства работ по устройству встроенной системы приведен в табл. 9.1. Принята горизонтальная схема развития потоков с совмещением работ по захваткам (секциям). Такое решение позволяет увязать технологические потоки, обеспечив фронт работ по возведению монолитных стен и монтажу сборных конструкций перекрытия, выполнению работ по надстройке здания. Совмещение работ обеспечивает их непрерывность и цикличность.
Таблица 9.1
График производства работ включает: подготовительный период; работы нулевого цикла; возведение монолитных конструкций этажа, монтаж сборных и объемных элементов. Для создания ритмичного потока осуществляются подбор опалубочной системы объемом на две захватки, выполнение монтажных работ с технологическим циклом, равным по продолжительности возведению внутренних стен.
Изменение кратности ритма производства работ наиболее характерно при надстройке здания, когда кроме перечисленных видов работ выполняются технологические процессы, связанные с возведением наружного стенового ограждения.
При выполнении строительных процессов ведется контроль качества работ на всех этапах возведения встроенных конструкций и надстраиваемых этажей: приемочный контроль качества сборных конструкций, деталей, материалов и полуфабрикатов; соблюдение условий их хранения и складирования; геодезический контроль производства работ; температурный контроль и контроль степени набора прочности бетоном и др.
Наличие объекта в жилой зоне требует выполнения мероприятий и технических решений, обеспечивающих безопасное выполнение работ и исключающих негативное воздействие на людские и транспортные потоки.
Рассмотренная технология ведения работ экономически целесообразна как для единичных зданий застройки, так и при условии комплексной реконструкции квартала застройки, что позволяет организовать межобъектные специализированные потоки, создать единую базу подготовки производства.
§ 9.5. Технология реконструкции зданий с использованием безбалочной каркасной системы
Система универсального безбалочного каркаса (КУБ) отличается от традиционных сборно-монолитных каркасных систем отсутствием ригелей, роль которых выполняют плиты перекрытий, и применением многоярусных колонн без выступающих частей. Пространственная жесткость и устойчивость встроенного каркаса обеспечиваются замоноличиванием стыков между элементами и использованием связей. Каркас работает по рамной или рамно-связевой схеме. Эффективность системы апробирована в жилищном и промышленном строительстве. Она имеет достаточно высокие технико-экономические показатели. В частности, удельный расход материалов на 1 м2 перекрытия составляет: сталь - 12,2-13,2 кг, сборный железобетон - 0,15-0,17 м3, монолитный бетон - 0,021 м3. Нагрузка на перекрытие может составлять от 800 до 2000 кг/м2. Удельные трудозатраты для различных модификаций систем составляют 0,7-1,1 чел.-ч на 1 м2 перекрытия.
Основное преимущество системы заключается в возможности за счет изменения размеров рядовых или надколонных плит создавать пространственные ячейки широких типоразмеров. Такое решение весьма важно при выполнении реконструктивных работ, где плановые размеры помещений даже в одном многоэтажном здании могут существенно отличаться. Отсутствие внутренних часто расположенных стен позволяет получать объемы с гибкой планировкой помещений.
Применение конструктивной системы безбалочного универсального каркаса приемлемо при реконструкции жилых зданий прямоугольной формы плана. К таким зданиям следует отнести прежде всего жилые дома заводских районов первых массовых серий.
Принципиальные схемы встроенных систем приведены На рис. 9.16, где представлены два варианта технических решений: для зданий без надстройки и с надстройкой этажей.
В зависимости от количества надстраиваемых этажей фундаменты под колонны могут выполняться отдельно стоящими стаканного типа или в виде монолитной плиты с подколонниками.
Система включает обязательное использование 2-3-ярусных колонн, надколонных и рядовых плит.
На рис. 9.16, А приведен вариант встроенной системы, когда технологические нагрузки мало отличаются от ранее существующих. В то же время применение отдельно стоящих фундаментов способствует перераспределению нагрузок и снижению их воздействия на стеновое ограждение. Это обстоятельство позволяет исключить работы по усилению наружных стен и их фундаментов. Размещение встроенного каркаса производится таким образом, чтобы расположение колонн находилось в простеночной части, а их высотные отметки соответствовали существующей высоте этажа.
Рис. 9.16. Принципиальные схемы встроенной системы КУБ при реконструкции зданий
а - без надстройки этажей с превращением чердачной части в мансардный этаж; б - с надстройкой трех полных этажей и двухэтажной мансардной части; 1 - фундаменты стаканного типа; 2 - монолитная фундаментная плита; 3 - подколенник; 4 - многоярусная колонна; 5 - надколонные плиты; 6 - рядовые и межколонные плиты; 7 - наружная стена надстраиваемых этажей; 8 - то же, мансардных
При надстройке зданий (рис. 9.16, Б) используется монолитная фундаментная плита, которая воспринимает нагрузки от здания, включая надстройку. При этом возможны изменение высотных отметок надстраиваемых этажей и расширение корпусов за счет применения консольных надколонных плит. Применение 3-ярусных колонн позволяет существенно сократить количество стыковых соединений, способствует не только снижению трудозатрат, но и повышению надежности зданий.
Для обеспечения пространственной жесткости используются различные связевые системы, в том числе диафрагмы жесткости, элементы лифтово-лестничных блоков и др.
При выполнении работ по устройству встроенного каркаса предусматривается обеспечение связей плит перекрытия со стеновым ограждением путем устройства штраб и омоноличивания стыков, а также установки анкерных элементов, соединяемых с закладными деталями надколонных плит. Предусматривается обязательное омоноличивание плит с колоннами и между собой.
Наличие 5-7 типоразмеров плит позволяет вписать систему практически в любую планировочную схему жилого здания прямоугольной формы.
Принципиальная схема размещения безбалочного каркаса в секции жилого дома приведена на рис. 9.17. Она включает колонны с шагом расположения, соответствующим размещению оконных проемов, надколонные плиты прямоугольного и консольного типов, межколонные трех типоразмеров и рядовые плиты.
Рис. 9.17. Размещение встроенного безбалочного каркаса в секцию реконструируемого здания
а - план типового этажа до реконструкции; б - монтажный план секции; в - разрез реконструируемого здания с надстройкой трех этажей; А - расстояние от оси крана до наружной стены; Б - 1/2 ширины рельсового пути крана; 1 - многоярусные колонны; 2 - нааколонные плиты; 3 - межколонные; 4, 5 - рядовые плиты
Стыки колонн с надколонными плитами, а также плит между собой омоноличиваются бетоном не ниже класса В25. Соединение плит со стеновым ограждением выполняется с устройством штраб по периметру стен, армированием этого пространства и омоноличиванием. Используются колонны высотой на 2-3 этажа с открытой арматурой в зоне стыка надколонных плит. Наращивание колонн по высоте осуществляется с использованием штепсельных соединений.
Технология устройства фундаментов
Как отмечалось, фундаменты под колонны системы КУБ выполняются из отдельно стоящих сборных или монолитных фундаментов стаканного типа при выполнении работ без надстройки зданий и в виде монолитной плиты, когда требуется надстройка несколькими этажами.
Дата добавления: 2016-03-22; просмотров: 1210;