Дифференциальные уравнения САУ. Форма вход-выход, операторная форма вход-выход и форма Коши описания САУ с сосредоточенными параметрами
Вернёмся к уравнению прямолинейного движения точечного объекта с переменной массой (4).
,
Где - сила, действующая на объект (вход);
- координата положения объекта – (выход);
- масса объекта (параметр).
Рассматриваемое уравнение называется уравнением в форме вход-выход.
В ТАУ есть неписанные установившиеся традиционные правила, касающиеся символьного описания объекта безотносительно к его природе.
Коэффициенты уравнения принято обозначать греческими буквами
; .
Сила, если она выступает в роли внешнего воздействия, то её обозначают F, а если в роли управляющего, то U.
Таким образом, уравнение (4) примет вид.
. (5)
Любое дифференциальное уравнение n-го порядка можно представить виде системы n уравнений первого порядка или в форме Коши (иначе говорят уравнениями в пространстве состояний). Продемонстрируем это на примере (5). Введём обозначения , , где хi=(i=1,2) – компоненты вектора состояний. С учётом этих обозначений уравнение (5) можно переписать в виде систем уравнений в форме Коши.
.
3. Линеаризация уравнения динамики САУ |
Достаточно часто встречаются звенья, имеющие нелинейную зависимость между входной и выходной координатами. Если для малых отклонений от установившегося режима нелинейность несущественна, то в этом случае до составления исходных дифференциальных уравнений САУ выполняют процедуру линеаризации.
Линеаризацией называется замена реальных нелинейных уравнений статических характеристик элементов близкими к ним линейными уравнениями. Линеаризация возможна, если нелинейная характеристика непрерывна и имеет непрерывные частные производные. На рис.2.1. приведена геометрическая интерпретация линеаризации по методу малых отклонений.
Рис.2.1. Геометрическая интерпретация линеаризации
Разложив функцию y=f(x) в ряд Тейлора, получим
где y0- значение выхода, соответствующее входу x0; dky/dxk - значения производных, взятых в точке А(x0;y0). Тогда для малых отклонений x:
или
где при x=x0.
Если выходная величина элемента зависит от нескольких входных воздействий, то при линеаризации по методу малых приращений следует определять частные производные по всем воздействиям, а приращение выхода является суммой частных приращений, т.е.
где x1, x2, …, xn - приращения входных воздействий; - частные производные.
4. Обобщение уравнений динамики САУ
К линеаризованной САУ можно применить принцип суперпозиции: реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций на каждое воздействие в отдельности. Это позволяет звено с двумя входами u и f разложить на два звена, каждое из которых имеет один вход и один выход (рис.27). Поэтому в дальнейшем мы ограничимся изучением поведения систем и звеньев с одним входом, уравнение динамики которых имеет вид:
Это уравнение описывает САУ в динамическом режиме лишь приближенно с той точностью, которую дает линеаризация. Однако следует помнить, что линеаризация возможна только при достаточно малых отклонениях величин и при отсутствии разрывов в функции F в окрестностях интересующей нас точки, которые могут быть созданы различными выключателями, реле и т.п.
Обычно n m, так как при n < m САУ технически нереализуемы.
5. Передаточная функция САУ
В ТАУ часто используют операторную форму записи дифференциальных уравнений. При этом вводится понятие дифференциального оператораp = d/dt так, что, dy/dt = py, а pn = dn/dtn. Это лишь другое обозначение операции дифференцирования. Обратная дифференцированию операция интегрирования записывается как 1/p. В операторной форме исходное дифференциальное уравнение записывается как алгебраическое:
Не надо путать эту форму записи с операционным исчислением хотя бы потому, что здесь используются непосредственно функции времени y(t), u(t) (оригиналы), а не их изображения Y(p), U(p), получаемые из оригиналов по формуле преобразования Лапласа. Вместе с тем при нулевых начальных условиях с точностью до обозначений записи действительно очень похожи. Это сходство лежит в природе дифференциальных уравнений. Поэтому некоторые правила операционного исчисления применимы к операторной форме записи уравнения динамики. Так оператор p можно рассматривать в качестве сомножителя без права перестановки, то есть py yp. Его можно выносить за скобки и т.п.
Поэтому уравнение динамики можно записать также в виде:
Дифференциальный оператор W(p) называют передаточной функцией. Она определяет отношение выходной величины звена к входной в каждый момент времени: W(p) = y(t)/u(t), поэтому ее еще называют динамическим коэффициентом усиления. В установившемся режиме d/dt = 0, то есть p = 0, поэтому передаточная функция превращается в коэффициент передачи звена K = bm/an.
Знаменатель передаточной функции D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an называют характеристическим полиномом. Его корни, то есть значения p, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функции.
Числитель K(p) = bopm + b1pm - 1+ ... + bm называют операторным коэффициентом передачи. Его корни, при которых K(p) = 0 и W(p) = 0, называются нулями передаточной функции.
Звено САУ с известной передаточной функцией называется динамическим звеном. Оно изображается прямоугольником, внутри которого записывается выражение передаточной функции. То есть это обычное функциональное звено, функция которого задана математической зависимостью выходной величины от входной в динамическом режиме. Для звена с двумя входами и одним выходом должны быть записаны две передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена в динамическом режиме, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин. Например, одним из динамических звеньев является интегратор. Его передаточная функция Wи(p) = 1/p. Схема САУ, составленная из динамических звеньев, называется структурной.
6. Элементарные динамические звенья
Динамика большинства функциональных элементов САУ независимо от исполнения может быть описана одинаковыми по форме дифференциальными уравнениями не более второго порядка. Такие элементы называют элементарными динамическими звеньями. Передаточная функция элементарного звена в общем виде задается отношением двух полиномов не более чем второй степени:
Wэ(p) = .
Известно также, что любой полином произвольного порядка можно разложить на простые сомножители не более, чем второго порядка. Так по теореме Виета модно записать
D(p) = aopn + a1pn - 1 + a2pn - 2 + ... + an = ao(p - p1)(p - p2)...(p - pn),
где p1, p2, ..., pn - корни полинома D(p). Аналогично
K(p) = bopm + b1pm - 1+ ... + bm = bo(p - p~1)(p - p~2)...(p - p~m),
где p~1, p~2, ..., p~m - корни полинома K(p). То есть
Корни любого полинома могут быть либо вещественными pi = ai, либо комплексными попарно сопряженными pi = ai ± j i . Любому вещественному корню при разложении полинома соответствует сомножитель (p - ai ). Любая пара комплексно сопряженных корней соответствует полиному второй степени, так как
(p - ai + j i )(p - ai - j i ) = (p - ai)2 + i 2 = p2 - 2pai + (ai 2 + i 2).
То есть
Поэтому любую сложную передаточную функцию линеаризованной САУ можно представить как произведение передаточных функций элементарных звеньев. Каждому такому звену в реальной САУ, как правило, соответствует какой - то отдельный узел. Зная свойства отдельных звеньев можно судить о динамики САУ в целом.
В теории удобно ограничиться рассмотрением типовых звеньев, передаточные функции которых имеют числитель или знаменатель, равный единице, то есть W(p) = , W(p) = , W(p) = 1/p, W(p) = p, W(p) = Tp + 1, W(p) = k. Из них могут быть образованы все остальные звенья. Звенья, у которых порядок полинома числителя больше порядка полинома знаменателя, технически нереализуемы.
Дата добавления: 2016-03-20; просмотров: 1680;