ЛИНЕЙНЫЕ СТАЦИОНАРНЫЕ ЗАДАЧИ ФИЛЬТРАЦИИ.
В этих трёх лекциях приведены основные положения теории фильтрации одномерных потоков однородных и неоднородных жидкостей и газов при установившихся и неустановившихся процессах. Большое внимание уделено пространственным задачам теории фильтрации жидкостей и газов и их смесей при установившихся и нестационарных изотермических процессах. Дано развитие теории притока сжимаемой жидкости и газа к несовершенным скважинам при линейном и нелинейном законах фильтрации, методам расчета добавочных фильтрационных сопротивлений. Изложены основные положения теории фильтрации в двойных средах. Рассмотрены задачи притока к трещинам гидравлического разрыва пласта и горизонтальным стволам, особенности фильтрации жидкости и газа в деформируемом пласте. Изложена теория вытеснения одной жидкости другой, фильтрация газоконденсатных смесей, теория конусообразования и соответствующие им прикладные задачи.
Изложенные положения базируются на современных достижениях науки и практики в теории фильтрации и разработки нефтяных, нефтегазовых и газоконденсатных месторождений, науки о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах. Она является областью гидромеханики, в которой рассматривается не движение жидкостей и газов вообще, а особый вид их движения — фильтрация, которая имеет свои специфические особенности. Она служит теоретической основой разработки нефтяных, газовых и газоконденсатных месторождений. Методами теории фильтрации решаются важнейшие задачи гидрогеологии, расчет притоков жидкости к искусственным водозаборам и дренажным сооружениям, изучение режимов естественных источников и подземных потоков, расчет фильтрации воды в связи с сооружением и эксплуатацией плотин, понижением уровня грунтовых вод, задачи о движении реагентов через пористые среды и специальные фильтры, фильтрация жидкостей и газов через стенки пористых сосудов и труб — вот далеко не полный перечень областей широкого использования методов теории фильтрации.
Начало развитию подземной гидромеханики было положено французским инженером Анри Дарси (1803-1858 гг.), который в процессе работы над проектом водоснабжения г. Дижона (Франция) провел многочисленные опыты по изучению фильтрации воды через вертикальные песчаные фильтры. В опубликованной в 1856 г. замечательной книге А. Дарси дал подробное описание своих опытов и сформулировал обнаруженный им экспериментальный закон, в соответствии с которым скорость фильтрации жидкости прямо пропорциональна градиенту давления.
Закон Дарси (Анри Дарси, 1856) — закон фильтрации жидкостей и газов в пористой среде. Исторически закон был получен А.Дарси экспериментально, но может быть получен с помощью осреднения уравнений Навье – Стокса, описывающих течение в масштабе пор (в настоящее время имеются доказательства для пористых сред с периодической и случайной микроструктурой). Выражает зависимость скорости фильтрации флюида от градиента напора:
где: — скорость фильтрации, — коэффициент фильтрации, — градиент напора.
Анри Филибер Гаспар Дарси (фр. Henry Philibert Gaspard Darcy, 10 июня 1803, Дижон, — 2 января 1858, Париж) — французский инженер-гидравлик, обосновавший закон Дарси (1856), связывающий скорость фильтрации жидкости в пористой среде с градиентом давления: «По-видимому, для песка одного качества, пропускаемый им расход прямо пропорционален напору и обратно пропорционален толщине фильтрующего слоя (грунта)».
Именем Дарси названа единица измерения проницаемости пористой среды.
Под руководством Дарси в г. Дижоне была создана первая в Европе система городских очистных сооружений с различными фильтрационными засыпками. Это настолько изменило город в лучшую сторону, что уже на следующий день после смерти Дарси от пневмонии главной площади города было присвоено его имя.
В эти же годы другой французский инженер Жюль Дюпюи (1804- 1866 гг.) опубликовал монографию, в которой впервые изложил гидравлическую теорию движения грунтовых вод, вывел формулы для расчета дебитов колодцев и дрен, названные его именем, решил другие фильтрационные задачи.
Jules Dupuit
Существенный вклад в развитие теории напорного и безнапорного движения грунтовых вод внес (Boussinesq) Жозеф Валантен Буссинеск (1842-1929 гг.) и Филипп Форхгеймер (1852-1933 гг.).
Ч. Слихтер (1864—1946 гг.), работавший в США, внес значительный вклад в развитие теории фильтрации. Им впервые предложены модели идеального и фиктивного грунта и показано, что пористость и просветность фиктивного грунта зависят не от диаметра частиц, а лишь от плотности их укладки.
Основоположниками отечественной школы теории фильтрации являются профессор Н.Е. Жуковский, академики Н.Н. Павловский, JI.C. Лей- бензон. Исследования этих выдающихся ученых, их многочисленных учеников и последователей стали фундаментальной основой развития теории фильтрации в нашей стране.
Н.Е. Жуковский (1847-1921 гг.) в 1889 г. опубликовал первую работу по теории фильтрации «Теоретическое исследование о движении подпочвенных вод». Им впервые выведены общие дифференциальные уравнения теории фильтрации, показано, что напор как функция координат удовлетворяет уравнению Лапласа, указано на математическую аналогию теплопроводности и фильтрации. Им исследованы также вопросы капиллярного поднятия воды в пористой среде, решен ряд задач о притоке воды к скважинам.
Н.Н. Павловскому (1884-1937 гг.) принадлежит определяющая роль в развитии теории фильтрации в гидротехническом направлении. В опубликованной монографии «Теория движения грунтовых вод под гидротехническими сооружениями и ее основные приложения» изложена разработанная им строгая математическая теория движения фунтовых вод под гидротехническими сооружениями. Им впервые многие задачи фильтрации воды были сформулированы как краевые задачи математической физики. Н.Н. Павловский впервые обосновал и предложил применение метода электрогидродинамической аналогии (ЭГДА) для решения фильтрационных задач, что в последующем нашло широкое применение для решения задач фильтрации воды, нефти и газа в неоднородных коллекторах.
Н.Н. Павловский впервые предложил использовать параметр Рей- нольдса в качестве критерия существования закона Дарси, что имеет важное значение для исследования законов сопротивления при фильтрации. Фундаментальные результаты в развитии теории движения грунтовых вод получены академиком П.Я. Полубариновой-Кочиной.
Пелаге́я Я́ковлевна Ко́чина (урожд. Полуба́ринова; 1899 — 1999) — советский физик-гидродинамик, академик АН СССР.
Леонид Самуилович Лейбензо́н (1879—1951) — русский и советский учёный-механик основатель советской школы ученых и специалистов, специалист в области гидродинамики, теории упругости, теории фильтрации газа и нефти.
Теоретические и экспериментальные исследования Л.С. Лейбензона начались в 1921 г. в Баку. Ему принадлежит приоритет в постановке и решении ряда задач нефтегазовой и подземной гидромеханики. Им проведены первые исследования по фильтрации газированных жидкостей, сформулированы задачи нестационарной фильтрации при расчетах стягивания контуров нефтеносности при вытеснении нефти водой, получены фундаментальные результаты в развитии теории фильтрации природного газа.
Трудами учеников и последователей академика Л.С. Лейбензона сложилась школа, которая по праву называется школой Л.С. Лейбензона.
Выдающийся вклад в развитие теории фильтрации в нефтегазоводоносных пластах внесли академик С.А. Христианович, профессоры Б.Б. Лапук, Исаак
Абрамович Чарный, В.Н. Щелкачев и К.С Басниев. Написанные ими монографии и учебники стали классическими и основополагающими.
§ 2. ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ ФИЛЬТРАЦИИ
На различных этапах строительства скважины возникает необходимость в решении задач, связанных с оттоком жидкости из скважины и притоком ее в скважину из пласта. Здесь основное значение имеют закономерности движения жидкости в пласте, основанные на решении соответствующих граничных задач теории фильтрации.
Фильтрация - это движение жидкостей, газов и их смесей под действием перепада давления в твердом проницаемом теле, пронизанном системой сообщающихся между собой пустот (поры, трещины).
Нефть и природные газы заключены в недрах Земли. Их скопления связаны с вмещающими горными породами (пластами) - пористыми и проницаемыми образованиями, имеющими непроницаемые кровлю и подошву. Горные породы, которые могут служить вместилищами нефти и газа и отдавать их при разработке, называются коллекторами. В свою очередь, коллекторы называют пористыми или трещиноватыми в зависимости от геометрии пустот.
Природные жидкости (нефть, газ, подземные воды и их смеси) находятся в пустотах (порах и трещинах) коллекторов. Часто находящиеся в пустотном пространстве пласта природные жидкости обозначают общим термином флюид,подразумевая под ним любую из них. Флюид, находящийся в коллекторе, может находиться в состоянии покоя или двигаться. Движение флюидов через твердые (вообще говоря, деформируемые) трещиноватые или пористые среды называется фильтрацией. Фильтрация может быть обусловлена воздействием различных сил: градиентом давления, концентрации, температуры, капиллярными, электромолекулярными и другими силами. Например, движение (фильтрация) расплавленного жира в фитиле свечи или керосина в фитиле керосиновой лампы обусловлено капиллярными силами. Однако в дальнейшем будем рассмотривать течения, вызываемые действием градиента давления или силы тяжести.
Поровое пространство осадочных горных пород - сложная система сообщающихся межзернистых пустот, в которой трудно выделить отдельные поровые каналы (рис. 1.1). Размеры пор, например, в песчаных породах составляют обычно единицы или десятки микрометров (мкм). Движение флюидов в пласте происходит с очень малыми скоростями, порядка микрометров в секунду (в гидромеханике движения со столь малыми скоростями часто называются ползущими).
Рис. 3.1. Шлиф нефтяного песчаника |
Поэтому процесс фильтрации с высокой степенью точности можно очень часто считать изотермическим. И в то же время при фильтрации в горных породах возникает значительная сила трения. При движении флюидов в пустотном пространстве коллектора соприкосновение между твердым скелетом и жидкостью происходит по огромной поверхности. Например, в 1м3 пористой среды (песчаника) площадь поверхности пустотного пространства может достигать порядка 104 м2. Поэтому основным свойством флюида, которое влияет на фильтрацию, является вязкость. В связи с этим обстоятельством вязкость учитывается даже при фильтрации газа, а так как сила трения распределена по всему объему коллектора, то Н.Е. Жуковский предложил при описании фильтрации силу трения считать массовой силой.
Строение нефтяных и газовых залежей осложняется значительной неоднородностью и анизотропией свойств пород, их слоистостью, наличием тектонических и стратиграфических нарушений (разрывов сплошности породы). Разведка месторождений, исследование пластов, извлечение нефти и газа осуществляется через отдельные скважины диаметром 10-20 см, отстоящие друг от друга до сотни метров.
Объектом изучения в теории фильтрации является движущаяся жидкость (газ, смесь), а скелет тела – средой, в которой это движение происходит.
Основная характеристика фильтрационного движения – вектор скорости фильтрации
, | (2.28) |
где – компоненты скорости фильтрации; – расход жидкости через элементарные площадки , проходящие через некоторую точку среды перпендикулярно к соответствующим координатным осям. Если через точку проведена произвольно ориентированная площадка , то проекция вектора на нормаль к площадке равна
, | (2.29) |
где – направляющие косинусы нормали ; – расход жидкости через площадку .
Подчеркнем, что расходы в формулах (2.28) и (2.29) делятся на полную площадь , а не на ее часть, занятую жидкостью. Поэтому величина скорости фильтрации не равна истинной скорости движения жидкости , они связаны соотношением
, |
где – активная, или динамическая, пористость; и – соответственно элементарный объем среды и ее части, занятых подвижной жидкостью.
Горные породы, слагающие проницаемые пласты, характеризуются, как правило, сложной структурой флюидосодержащего пространства. Помимо пор они могут обладать развитой системой микро- и макротрещин. В зависимости от степени влияния трещин на фильтрацию жидкости принято различать пористые, трещиноватые и трещиновато-пористые породы.
Каждая из этих пород описывается некоторым конечным набором осредненных геометрических характеристик. Важнейшими из них являются пористость и, аналогично, трещинная пористость .
Для пористых пород зависит от формы, размеров и взаимного расположения твердых частиц. Из чисто геометрического рассмотрения фиктивного грунта, состоящего из одинаковых шарообразных частиц, Слихтер установил, что не зависит от их диаметра, а зависит только от их упаковки. Эта теоретическая пористость укладывается в диапазоне 0,26 – 0,47. Диапазон изменения пористости реальных тел намного шире.
Наряду с пористостью для описания пористого тела используют: просветность , эффективные диаметры частиц и пор . Просветностью называется отношение площади пор ко всей площади сечения, проведенную через данную точку тела. Диапазон изменения теоретической просветности, по Слихтеру, равен 0,093 – 0,214. Параметры и определяются по анализу фракционного состава частиц или микроструктуры пор и их кривых распределения.
Основными геометрическими параметрами трещиноватости являются: раскрытие трещин– расстояние между стенками;
объемная плотность трещиноватости – отношение площади поверхности всех трещин в некотором элементарном объеме к величине этого объема; поверхностная плотность трещиноватости – отношение суммы длин следов трещин, выходящих на элементарную площадку, к величине площади последней;
густота трещин - отношение количества трещин, секущих нормаль плоскостей, к элементу длины этой нормали;
ориентация трещин - в пространстве.
Пористые и трещиноватые породы с хаотичным, бессистемным распределением пор или трещин характеризуются изотропией фильтрационных свойств, в то время как породы с упорядоченной системой (большинство трещинных коллекторов) обладают ярко выраженной анизотропией.
Особенностью фильтрации в трещиновато-пористых породах является то, что закономерности фильтрации в порах и трещинах могут существенно отличаться.
Все это находит отражение в основном соотношении теории фильтрации – законе фильтрации, который устанавливает связь между вектором скорости и полем давления .
Существуют по крайней мере три основных фактора, которые влияют на характер (линейный, нелинейный) закона фильтрации: режим фильтрации (ламинарный, турбулентный), реологические свойства (ньютоновская, неньютоновская) и однородность жидкости.
Дата добавления: 2016-03-15; просмотров: 2041;