Роль липопротеинов в транспорте липидов
Липопротеины — это глобулярные частицы с высокой молекулярной массой, переносящие неполярные липиды (главным образом триглицериды и эфиры холестерина) в плазме. Общая модель строения липопротеиновой частицы представлена на рис. 315-1. Каждая частица содержит неполярную сердцевину, в которой в форме капли масла упаковано большое количество молекул гидрофобных липидов. Это гидрофобное ядро, на долю которого приходится большая часть массы всей частицы, состоит из триглицеридов и эфиров холестерина в разных соотношениях. Сердцевина окружена полярной поверхностной оболочкой из фосфолипидов, которая стабилизирует липопротеиновую частицу, обеспечивая ее растворимость в плазме. Кроме фосфолипидов, полярная оболочка содержит небольшие количества неэстерифицированного холестерина. Каждая липопротеиновая частица содержит также специфические белки (называемые апопротеинами), которые располагаются на ее поверхности. Апопротеины связываются со специфическими ферментами или транспортными белками на мембране клеток, направляя тем самым липопротеин к местам его метаболизма.
В табл. 315-1 приведена характеристика пяти основных классов липопротеинов, которые в норме циркулируют в плазме человека. Эти классы различаются по составу неполярных липидов в сердцевине, составу апопротеинов, а также плотностью, размерами и электрофоретической подвижностью.
Транспорт липидов: экзогенный путь. На рис. 315-2 представлены пути, по которым липопротеины транспортируют липиды в плазме. Наибольшее количество липопротеинов участвует в переносе поступающего с пищей жира, в состав которого входит более 100 г триглицеридов и около 1 г холестерина в сутки. В эпителиальных клетках кишечника пищевые триглицериды и холестерин включаются в крупные липопротеиновые частицы, называемые хиломикронами. Последние секретируются в лимфу кишечника и через общий кровоток поступают в капилляры жировой ткани и скелетных мышц, где взаимодействуют со связывающими местами капиллярных стенок. Будучи связанными с этими участками поверхности эндотелия, хиломикроны тем не менее оказываются объектом воздействия фермента липопротеинлипазы. Хиломикроны содержат особый апопротеин С II, активирующий липазу, высвобождающую свободные жирные кислоты и моноглицериды (рис. 315-3). Жирные кислоты проходят через эндотелиальную клетку и проникают в прилежащие адипоциты или мышечные клетки, в которых либо реэстерифицируются в триглицериды, либо окисляются.
Рис.315-1. Схематическое изображение структуры типичной липопротеиновой частицы плазмы (а) и двух неполярных липидов (б). Сердцевина сферической липопротеиновой частицы (а) состоит из двух неполярных липидов — триглицерида и эфиров холестерина, количества которых в разных липопротеинах различны. Неполярная сердцевина окружена поверхностной оболочкой, состоящей преимущественно из фосфолипидов. Апопротеины находятся на поверхности и достигают сердцевины. В фосфолипидный слой поверхностной оболочки включены разные количества неэстерифицированного холестерина. Качественный состав каждого из пяти основных классов липопротеиновых частиц в плазме человека см. в табл. 315-1. Для усвоения двух неполярных липидов — триглицерида и эфира холестерина (б) тканями необходим разрыв эфирных связей между жирными кислотами и глицерином (триглицерид) либо холестерином (эфир холестерина), что происходит под действием соответственно липопротеинлипазы и лизосомной холестеринэстеразы.
После удаления из сердцевины триглицеридов остаток хиломикрона отделяется от эпителия капилляров и вновь поступает в кровь. Теперь он превратился в частицу, содержащую сравнительно малое количество триглицеридов и большое количество эфиров холестерина. Происходит также обмен апопротеинами между ним и другими липопротеинами плазмы. Окончательный результат заключается в превращении хиломикрона в частицу его остатка, богатую эфирами холестерина, а также апопротеинами В-48 и Е. Эти остатки переносятся в печень, которая очень интенсивно поглощает их. Этот захват опосредуется связыванием апопротеина Е со специфическим рецептором, называемым рецептором остатка хиломикрона, на поверхности гепатоцита. Связанные остатки поглощаются клеткой и распадаются в лизосомах в процессе, называемом рецепторно-опосредованным эндоцитозом (см. рис. 315-3). Общий результат процесса транспорта, осуществляемого хиломикронами, заключается в доставке пищевых триглицеридов в жировую ткань, а холестерина в печень.
Рис.315-2. Схема транспорта триглицеридов и холестерина в плазме человека (подробности см. в тексте).
ЛПОНП — липопротеины очень низкой плотности, ЛППП — липопротеины промежуточной плотности, ЛПНП—липопротеины низкой плотности, ЛПВП—липопротеины высокой плотности, ЛХАТ-лецитин; холестеринацилтрансфераза, ЛП — липаза, липопротеинлипаза, СЖК — свободные жирные кислоты. Представлены основные апопротеины каждого класса липопротеинов. Присутствуют и другие апопротеины (см. табл. 315-1).
Часть поступающего в печень холестерина превращается в желчные кислоты, высвобождающиеся в кишечник, в котором действуют как детергенты и облегчают всасывание пищевого жира. Кроме того, часть холестерина поступает в желчь, не превращаясь в желчные кислоты. Печень поставляет холестерин и в другие ткани так называемым эндогенным путем, который обсуждается далее.
Транспорт липидов: эндогенный путь. Синтез триглицеридов в печени усиливается при потреблении продуктов с большим количеством углеводов. В печени углеводы превращаются в жирные кислоты, эстерифицируются глицерином с образованием триглицеридов, секретируемых в кровоток в составе ядра липопротеинов очень низкой плотности (ЛПОНП). Частицы ЛПОНП относительно велики, содержат в 5—10 раз больше триглицеридов, чем эфиров холестерина, и имеют в своем составе одну из форм апопротеина В, называемую В-100, которая отличается от апопротеина В-48, характерного для хиломикронов (табл. 315-1).
Частицы ЛПОНП попадают в тканевые капилляры, в которых взаимодействуют с тем же ферментом — липопротеинлипазой, который разрушает хиломикроны. Триглицеридное ядро ЛПОНП гидролизуется, и жирные кислоты используются для синтеза триглицеридов в жировой ткани. Остатки частиц, образующиеся в результате действия липопротеинлипазы на ЛПОНП, называются липопротеинами промежуточной плотности (ЛППП). Часть частиц ЛППП распадается в печени путем связывания с рецепторами, получившими название рецепторов липопротеинов низкой плотности (рецепторы ЛПНП), которые отличаются от рецепторов остатков хиломикронов. Остальная часть ЛППП остается в плазме, в которой подвергается дальнейшей трансформации, в процессе которой удаляются почти все оставшиеся триглицериды. При этом превращении частица теряет все свои апопротеины, за исключением апопротеина В-100. В результате из частицы ЛППП образуется богатая холестерином частица ЛПНП. Ядро ЛПНП почти целиком состоит из эфиров холестерина, а поверхностная оболочка содержит только один апопротеин — В-100. У человека довольно большая часть ЛПНП не поглощается печенью, и поэтому их уровень в крови человека относительно высок. Действительно, в норме примерно 3/4 общего холестерина плазмы человека находится в составе частиц ЛПНП.
Рис.315-3. Сравнение механизмов, посредством которых липопротеины, богатые триглицеридами (а), и липопротеины, богатые холестерином (б), доставляют липиды своей сердцевины в ткани-мишени. Триглицериды гидролизуются внеклеточным ферментом липопротеинлипазой (ЛПЛ), прикрепленной к клеткам эндотелия и действующей на его поверхности. Эфиры холестерина гидролизуются внутриклеточным ферментом — кислой липазой, локализующейся в лизосомах и расщепляющей эфиры, попадающие в клетку путем опосредованного рецептором эндоцитоза. ТГ — триглицериды, ЛПОНП — липопротеины очень низкой плотности, ЭХ — эфиры холестерина, ЛППП — липопротеины промежуточной плотности, ЛПНП — липопротеины низкой плотности, СЖК — свободные . жирные кислоты. Представлены апопротеины, ответственные за взаимодействие с ферментом и рецепторами (СП, В и Е).
Одна из функций ЛПНП заключается в снабжении холестерином разнообразных внепеченочных паренхиматозных клеток, например клеток коры надпочечников, лимфоцитов, мышечных клеток и клеток почек. Все они несут на своей поверхности рецепторы ЛПНП. Связавшиеся с этими рецепторами ЛПНП поглощаются посредством рецептороопосредованного эндоцитоза и внутри клеток разрушаются лизосомами (см. рис. 315-3). Эфиры холестерина из ЛПНП гидролизуются лизосомной холестерилэстеразой (кислая липаза), и свободный холестерин используется для синтеза мембран и в качестве предшественника стероидных гормонов. Как и внепеченочные ткани, печень обладает множеством рецептором ЛПНП; в ней холестерин ЛПНП используется для синтеза желчных кислот и для образования свободного холестерина, секретируемого в желчь. У человека ежесуточно рецептороопосредованным путем удаляется из плазмы 70—80 % ЛПНП. Остальная часть разрушается клеточной системой «чистильщиков» — фагоцитирующими клетками ретикулоэндотелиальной системы. В отличие от рецептороопосредованного пути разрушения ЛПНП путь их разрушения в клетках-«чистилыциках», как полагают, служит исключительно для разрушения ЛПНП при повышении их уровня в плазме, а не для снабжения клеток холестерином.
Таблица 315-1. Характеристика основных классов липопротеинов в плазме человека
Класс липопротеинов | Основные липиды | Апопротеины | Плотность, г/мл | Диаметр, мкм | Электрофоретическая подвижность |
Хиломикроны и их остатки | Пищевые триглицериды | A-I, A-II, В-48, C-I, C-II, C-III, Е | < 1,006 | 80—500 | Остается на старте |
ЛПОНП | Эндогенные триглицериды | В-48, C-I, C-II, C-III, E | < 1,006 | 30—80 | Пре-b |
ЛППП | Эфиры холестерина, триглицериды | В-100, C-III, E | <1,019 | 25—35 | Медленные пре-b |
ЛПНП | Эфиры холестерина | В-100 | 1,019—1,063 | 18—28 | b |
ЛПВП | То же | A-I, A-II | 1,063—1,210 | 5—12 | a |
Поскольку мембраны паренхиматозных клеток и клеток-«чистильщиков» подвергаются кругообороту и так как клетки погибают и обновляются, неэстерифицированный холестерин поступает в плазму, в которой обычно связывается липопротеинами высокой плотности (ЛПВП). Этот неэстерифицированный холестерин затем образует эфиры с жирными кислотами под действием присутствующего в плазме фермента — лецитинхолестеринацилтрансферазы (ЛХАТ). Образующиеся на поверхности ЛПВП эфиры холестерина переносятся на ЛПОНП и, в конце концов, включаются в ЛПНП. Таким образом формируется цикл, в котором ЛПНП доставляют холестерин внепеченочным клеткам и вновь получают его из них через ЛПВП. Большая часть холестерина, высвобождаемая внепеченочными тканями, переносится в печень, где экскретируется в желчь.
Диагностика гиперлипопротеинемии. Уровень в плазме одного класса липопротеинов или нескольких повышается при многих болезнях. Как правило, они выявляются по увеличению концентрации триглицеридов или холестерина в плазме натощак, т. е. по состоянию, называемому гиперлипидемией. Уровень холестерина плазмы отражает содержание общего холестерина, который включает как эфиры холестерина, так и неэстерифицированный холестерин. По содержанию холестерина и триглицеридов в плазме можно судить о природе липопротеиновых частиц, уровень которых повышен в этом случае. Изолированное повышение уровня триглицеридов в плазме указывает на увеличение концентрации хиломикронов или ЛПОНП. С другой стороны, изолированное повышение уровня холестерина почти всегда свидетельствует об увеличении концентрации ЛПНП. Часто одновременно повышаются уровни и триглицеридов, и холестерина. Это может отражать резкое увеличение концентрации хиломикронов и ЛПОНП, но в таком случае отношение триглицеридов к холестерину в плазме должно превышать 5:1. Альтернативой служит одновременное увеличение содержания ЛПОНП и ЛПНП, но при этом отношение триглицериды/холестерин в плазме обычно бывает менее 5:1.
Определение гиперлипопротеинемии достаточно произвольно, поскольку уровни липидов и липопротеинов в плазме у разных лиц распределяются по колоколообразной кривой без четкого разграничения между нормой и патологией. Поскольку на концентрацию липопротеинов влияет диета и другие факторы окружающей среды, необходимо устанавливать стандарты для отдельных групп населения. Обычно статистические границы колебаний в норме выбирают произвольно, исходя из результатов обследования большого числа практически здоровых лиц разного возраста. Границу чаще всего проводят в пределах верхних концентраций, которые регистрируются у 5—10 % здоровых (т. е. на уровне 90—95-й перцентили). Однако результаты анализа крови на липиды у жителей промышленных и преимущественно сельскохозяйственных регионов свидетельствуют о том, что «нормальные» в статистическом смысле концентрации липидов и липопротеинов не обязательно означают отсутствие патологии. В качестве рабочего правила значительной считают гиперлипопротеинемию у любого человека в возрасте до 20 лет, у которого уровень общего холестерина или триглицеридов в плазме превышает 1900 мг/л и 1400 мг/л соответственно. У лиц в возрасте старше 20 лет это состояние диагностируют при уровне в плазме общего холестерина и триглицеридов выше 2200 мг/л и 2000 мг/л соответственно.
Разнообразные сочетания липопротеинов, уровень которых повышен при патологии, подразделяют на шесть типов или категорий (табл. 315-2). Большинство из них может быть обусловлено разными генетическими болезнями (табл. 315-3). И наоборот, при некоторых генетических болезнях может диагностироваться гиперлипопротеинемия не одного, а нескольких типов. Кроме того, любой тип гиперлипопротеинемии может быть вторичным по отношению к другому метаболическому нарушению (табл. 315-4). Следовательно, типы липопротеинемий следует рассматривать как свидетельство нарушения обмена липопротеинов, а не как название конкретной болезни.
Таблица 315-2. Характер повышения липопротеинов в плазме (типы липопротеинемий)
Тип липопротеинемий | В плазме повышен уровень в основном | |
липопротеинов | липидов | |
Хиломикроны | Триглицериды | |
2а | ЛПНП | Холестерин |
ЛПНП и ЛПОНП | Холестерин и триглицериды | |
Остатки | Триглицериды и холестерин | |
ЛПОНП | Триглицериды | |
ЛПОНП и хиломикроны | Триглицериды и холестерин |
Для распознавания имеющегося типа липопротеинемий обычно достаточно простого определения уровня липидов в плазме в сочетании с данными клинического обследования (см. табл. 315-2). Иногда в случаях подозрения на повышение уровня остатков липопротеинов (липопротеинемия 3-го типа, при которой электрофоретически обнаруживается «широкая бета»-полоса) или на хиломикронемию (липопротеинемия 1-го типа) применяют бумажный электрофорез плазмы. В редких случаях определяют содержание ЛПВП, так как высокий уровень липопротеинов этого класса статистически связан с уменьшением риска инфаркта миокарда (см. гл. 195). Концентрацию ЛПВП можно определять в клинических лабораториях с помощью стандартизированных методик разделения липопротеинов, но значение результатов таких определений для прогнозирования возникновения инфаркта миокарда у отдельного больного остается проблематичным.
Дата добавления: 2016-03-05; просмотров: 2155;