Изучение вирусов животных и человека
После того как Д. И. Ивановский установил способность ВТМ проходить через фильтры, задерживающие бактерии, началось изучение в том же плане возбудителей различных болезней животных и человека. Уже в 1898 г. Ф. Лефлер и П. Фрош сообщили о фильтруемости вируса ящура.
В течение нескольких последующих лет была установлена фильтруемость возбудителей чумы кур, желтой лихорадки и чумы свиней.
Поскольку большинство вирусов увидеть при помощи светового микроскопа нельзя, усилия ученых на первых этапах были направлены на изучение более крупных образований, которые формируют некоторые вирусы в пораженных клетках. Подобные включения были описаны еще и XIX в. при контагиозном моллюске человека, при оспе птиц и оспе человека (Г. Гварниери). В 1903 г. А. Негри описал своеобразные тельца, выявляемые в протоплазме нервных клеток при бешенстве. В 1921 г. Б. Липшютц классифицировал вирусные включения по их местоположению в ядре или цитоплазме клетки. Вирусы оспы и бешенства, например, формируют включения в цитоплазме, аденовирусы и герпетические вирусы — в ядре, а вирус кори — в ядре и цитоплазме. Было установлено, что включения различаются и по своей структуре. Они могут представлять собой места синтеза вирусных компонентов, агрегаты вирусных частиц или являться следствием нарушенного клеточного обмена.
Впервые непосредственно вирусные частицы удалось увидеть Дж. Буисту в 1887 г. при исследовании материала от оспенного больного; возбудитель оспы относится к наиболее крупным вирусам, размеры которого находятся на границе разрешающей способности светового микроскопа.
До 1931 г. выделение и культивирование вирусов человека и животных осуществлялось почти исключительно путем заражения восприимчивых животных. Имелись отдельные успешные попытки размножении вирусов в клеточных культурах (осповакцины, ящура), однако ввиду сложности техники они не нашли широкого применении.
Путем заражения животных были выделены и изучены возбудители оспы, бешенства, простого герпеса, гриппа, полиомиелита, лимфоцитарного хориоменингита, желтой лихорадки, ряда клещевых и комариных энцефалитов, энцефаломиелитов лошадей и некоторые другие. Однако этот метод не позволял получать вирус в больших количествах, необходимых для его детального изучения; к тому же большие трудности представляла очистка материала от тканевых фрагментов. Кроме того, далеко не все вирусные инфекции удавалось воспроизвести на лабораторных животных.
Толчком для дальнейшего развития вирусологии послужило открытие в 1931 г. Эрнстом Гудпасчером возможности культивировать вирус оспы кур в развивающемся курином эмбрионе. Было установлено, что очень многие вирусы хорошо размножаются в этих условиях, накапливаясь в хорионаллантоисной оболочке и жидкостях эмбриона. Очистка вируса от аллантоисной жидкости оказалась сравнительно простой. К тому же у некоторых вирусов (например, у ряда представителей оспенной группы) была обнаружена способность вызывать на хорионаллантоисной оболочке очаговые поражения, по числу которых можно весьма точно определить титр вируса.
В 1941 г. Г. Херст обнаружил у вируса гриппа способность склеиватьэритроциты кур. В дальнейшем у многих вирусов была установлена способность агглютинировать эритроциты тех или иных млекопитающих и птиц. Это дало в руки вирусологов простой метод количественного определения многих вирусов и соответствующих антител.
В 30-е годы были разработаны новые методы исследования вирусов. В 1939 г. М. фон Арденн и X. Руска предложили метод электронно-микроскопического исследования вирусных частиц, находящихся во взвеси. Позже была разработана методика получения ультратонких тканевых срезов, позволяющая электронномикроскопически выявлять вирусы внутри пораженных клеток. Для получения концентрированных вирусных суспензий стали использовать ультрацентрифугирование. Путем измерения скорости осаждения различных вирусов оказалось возможным определить их размеры и вес. В 1933 г. У. Элфорд предложил использовать для определения размеров вирусов коллодийные мембраны с различной величиной пор. После получения ВТМ в кристаллическом виде было установлено, что формировать кристаллическиеструктуры могут и некоторые мелкие вирусы позвоночных, например вирус полиомиелита.
Совершенно исключительное значение для развития вирусологии имела предложенная в 1948 г. Джоном Эндерсом с сотрудниками методика получения однослойных клеточных культур из обработанных трипсином тканей с добавлением пенициллина для ингибирования роста бактерий. Она позволяет выращивать практически любые типы клеток. Выращенные в культуре клетки нередко обладают значительно более широким спектром восприимчивости по отношению к различным вирусам, чем те же клетки в организме. При инокуляции достаточной дозы вируса оказалось возможным инфицировать одновременно все клетки однослойной культуры. Это позволило получать вирус в высоком титре, к тому же с небольшой примесью клеточных белков. Большинство вирусов при развитии в однослойных культурах вызывает дегенерацию клеток («цитопатическийэффект»). Это явление стали широко использовать для титрования вирусов и антител.
Р. ДюльбеккоиМ. Фогт (1952) разработали на основе однослойных клеточных культур методику получения под слоем агара или другого геля колоний вируса (бляшек), образующихся из одной инфекционной вирусной частицы. Метод позволил производить точный подсчет количества инфекционных вирусных частиц, а также выделять отдельные клоны вируса, что необходимо при генетических и иных исследованиях.
Размеры вирусов животных и человека находятся в пределах от 300 нм (оспенные вирусы) до 18—22 нм (аденоассоциированные). Использование электронной микроскопии и рентгеноструктурного анализа в сочетании с рядом других методов позволило расшифровать структуру большинства вирусов. Начало этим исследованиям положили Ф. Крик и Дж. Уотсон в 1956 г. Было установлено, что все вирусы человека и животных состоят из ядра, содержащего один тип нуклеиновой кислоты — ДНК или РНК, и протеиновой оболочки (капсида). Вместе обе эти структуры носят название нуклеокапсида. Капсид любого вируса построен из структурных субъединиц, каждая из которых представляет одну или несколько полипептидных цепей. Существует два типа организации субъединиц — спиральный и кубический. У некоторых крупных вирусов (например, оспенных) могут комбинироваться оба способа соединения субъединиц. При спиральной структуре нуклеокапсид имеет форму тяжа (например, у вируса гриппа), а при кубической — правильного многогранника (например, у аденовирусов).
Мелкие вирусы (например, вирус полиомиелита) представляют собой «голый» нуклеокапсид. Более крупные вирусы (герпетические, миксовирусы) имеют еще внешнюю оболочку, которая у ряда вирусов состоит в основном из материала клетки и содержит протеины, углеводы и иногда липоиды.
Большинство РНК-содержащих вирусов животных и человека содержит одну молекулу одноцепочечной РНК. Исключение составляют реовирусы и группа арбовирусов, у которых РНК состоит из двух комплементарных цепей. У большинства ДНК-содержащих вирусов нуклеиновая кислота представляет собой двухцепочечную молекулу и только одна группа вирусов (парвовирусы) имеют одноцепочечную ДНК. Величина информации, заключенной в нуклеиновой кислоте разных вирусов, различна и зависит от длины тяжа нуклеиновой кислоты. Мелкие вирусы могут синтезировать небольшое число протеинов, более сложные — помимо структурных протеинов еще ферменты. Некоторые вирусы (например, адено-ассоциированные) обладают недостаточной информацией даже для собственного воспроизводства: для своего размножепия они нуждаются в аденовирусе-помощнике.
Для изучения процессов репликации вирусов животных и человека и взаимодействия их с клетками большое значение имел разработанный А. Кунсом (1941) метод окраски вирусных антител флюорохромами, например флюоресцеин-изотиоцианатом, который позволяет изучать при помощи люминесцентной микроскопии динамику накопления вирусных белков в клетке. На том же принципе основано использование конъюгиро-ванных с ферритином или пероксидазой антител, когда вирусные антитела в клетке выявляют при помощи электронной микроскопии.
Адсорбция вирусов животных на клетках происходит в результате действия электростатических сил, межмолекулярных сил Ван-дер-Ваальса, а также взаимодействия соответствующих друг другу рецепторов вируса и лигандов клетки. Есть вирусы (например, пикорнавирусы), адсорбирующиеся только на восприимчивых клетках; другие (оспенные и аденовирусы) могут соединяться как с восприимчивыми, так и невосприимчивыми клетками. Некоторые клетки, не обладающие рецепторами для взаимодействия с какими-либо вирусами in vivo, приобретают их при культивировании in vitro (почечные клетки приматов к вирусу полиомиелита).
В отличие от бактериофагов, вирусы животных не обладают каким-либо сложным аппаратом для введения в клетку своей нуклеиновой кислоты; они просто фагоцитируются клеткой. Некоторые вирусы (например, полиомиелита) уже при адсорбции на клетке теряют свой капсид. Другие (герпетические и оспенные вирусы, миксо- и аденовирусы) проникают в клетку в виде цельных вирионов, и уже там нуклеиновая кислота освобождается из капсида.
Было выяснено, что процесс репликации отдельных вирусов человека и животных имеет определенные особенности, однако у всех она протекает по общей принципиальной схеме. Репликация начинается с синтеза «ранних протеинов», которые служат для репликации нуклеиновой кислоты, но не включаются в вирусные частицы. Лишь после этого начинается процесс репликации самой нуклеиновой кислоты.
Что касается процесса синтеза структурных белков, входящих в состав вируса, то оказалось, что он протекает несколько отлично у ДНК- и РНК-содержащих вирусов. У первых на одной из цепей ДНК после их расхождения синтезируется информационная РНК, передающая информацию от ДНК клеточным рибосомам, где происходит синтез вирусных белков. У РНК-содержащих вирусов функция передачи информации принадлежит самой вирусной РНК.
Места синтеза вирусных компонентов в клетке у разных вирусов различны. У оспенных вирусов весь процесс протекает в цитоплазме, у аденовирусов — в ядре, в то время как ДНК герпетических вирусов синтезируется в ядре, а структурные белки в цитоплазме. Созревание всех вирусов, т. е. соединение нуклеиновой кислоты и белков, происходит в цитоплазме по типу самосборки.
Внешнюю оболочку вирусы приобретают при прохождении через различные клеточные мембраны. Свернутый в клубок нитевидный нуклеокапсид вируса гриппа и других микровирусов облекается оболочкой в момент прохождения через оболочку клетки. Герпетические вирусы приобретают оболочки при прохождении как сквозь ядерные, так и цитоплаз-матические мембраны.
Были описаны различные формы взаимодействия вирусных частиц, находящихся в одной клетке. Г. Берри и X. Дедрик (1936) наблюдали реактивацию гретого вируса миксомы, если его вводили кролику одновременно с инфекционным вирусом фибромы. Позже было установлено, что в этом случае активный вирус освобождает нуклеиновую кислоту гретого вируса из капсида, вследствие чего она приобретает способность функционировать. При генетической форме реактивации соединяются два или более поврежденных геномов одного вируса.
В 1956 г. Г. Херст и Т. Готлиб наблюдали рекомбинацию двух гриппозных штаммов с появлением генетически стойких вариантов со свойствами обоих родителей. В 1964 г. обнаружили даже образование гибридов между неродственными вирусами — аденовирусом человека и вакуолизирующим вирусом обезьян.
Особый интерес представляют онкогенные вирусы. Как уже отмечалось, в 1911 г. П. Раус перевил саркому кур бесклеточным фильтратом. В 1936 г. Дж. Битнер открыл вирус рака молочных желез мышей. Затем была обнаружена способность вызывать трансформацию клеток in vitro у ДНК-содержащих онкогенных вирусов — полиомы, SV40 обезьян, аденовирусов.
Все онкогенные РНК-содержащие вирусы относятся к одной группе - лейковирусам, в то время как ДНК-содержащие — к различным группам - оспенным вирусам, паповавирусам, аденовирусам и герпетическим. Общим свойством обеих групп является способность интегрировать свой геном в геном клетки, вследствие чего она приобретает способность к неограниченному росту. Эта концепция была выдвинута Р. Дюльбекко (I960) и Л. А. Зильбером (1961). Было установлено, что трансформированные ДНК-содержащими вирусами клетки содержат часть вирусного генома, синтезируют вирусспецифический антиген, но не продуцируют вирусных частиц (исключение составляют оспенные вирусы).
В отношении РНК-содержащих вирусов X. Теминв 1964 г.показал, что они включают в клеточный геном не РНК, а вновь образованную комплементарнуюдвуспиральнуюДНК. У всех лейковирусов был обнаружен необходимый для этого фермент — РНК-зависимая ДНК-полимераза (ревертаза) (Г. Темин, С. Мицетани, 1970). Следует отметить, что большинство онкогенных вирусов могут функционировать и как инфекционные, вызывая дегенерацию клеток.
Одной из реакций клетки на внедрение вируса является выработка резистентности к заражению другим вирусом (явление интерференции). В 1935 г. М. Хоскинс сообщил о взаимном подавляющем действии ней-ропного и висцеротропного штаммов вируса лихорадки в опытах на обезьянах, а Ф. Маграсси — двух различных штаммов вируса герпеса простого при введении кроликам. Вскоре интерференция была выявлена и между неродственными вирусами, если опыты ставились с куриными эмбрионами или клеточными культурами. Далее было установлено, что резистентность клетки может вызвать не только живой, но и инактивированный вирус. В большинстве случаев интерференция оказалась связанной с синтезом клеткой особого белка — интерферона, открытого А. Айзаксом и Дж. Линденманном в 1957 г. Интерферон обусловливает невосприимчивость клетки к различным вирусам и отличается видоспецифичностью (так, куриный интерферон защищает только куриные клетки).
Надежды использовать интерферон для лечения вирусных заболеваний не оправдались, хотя он и может применяться как профилактическое средство. Большее значение имеет стимуляция синтеза организмом собственного интерферона; индукторами могут служить определенные химические соединения, например двутяжевые РНК.
Наиболее эффективным методом борьбы с вирусными инфекциями остается активная иммунизация. Предложенная Э. Дженнером в 1796 г. вакцина против оспы является одним из лучших противовирусных препаратов. Занимаясь практической врачебной деятельностью, англичанин Эдуард Дженнер (1749—1823) изучал известные в народной медицине предохранительные свойства коровьей оспы: люди, переболевшие ею, становятся иммунными как к коровьей, так и к человеческой оспе. После долгих и тщательных наблюдений 14 мая 1796 г. Дженнер впервые провел прививку коровьей оспы восьмилетнему мальчику, использовав материал, взятый от женщины (доярки), болевшей коровьей оспой. Прививка сопровождалась недомоганием. А два месяца спустя мальчик был инфицирован гноем из пустулы больного натуральнойоспой— и остался здоровым. В 1798 г., после многократного повторения этого опыта, Дженнер опубликовал результаты своей работы. Он предложил назвать новый метод вакцинацией (от латинского vaccinia — коровья оспа).
Страх перед оспой был так велик, что метод Дженнера приняли с восторгом, а сопротивление наиболее консервативных было быстро сломлено. Вакцинация распространилась по всей Европе, и болезнь отступила. В странах с высокоразвитой медициной врачи уже не чувствовали себя беспомощными в борьбе с оспой. В истории человечества это был первый случай быстрой и радикальной победы над опасной болезнью.
Задолго до открытия вирусов была также разработана Л. Пастером вакцина против бешенства. Очень эффективным препаратом оказалась вакцина против желтой лихорадки, разработанная в 30-е годы XX в. Все эти вакцины готовятся из живых ослабленных штаммов вируса.
Вакцина против желтой лихорадки была получена в 30-е годы южноафриканским микробиологом Максом Тейлером после длительных внутримозговых пассажей (серии последовательных заражений) вируса, сначала на обезьянах, а затем на белых мышах. У мышей вирус желтой лихорадки вызывал энцефалит — воспаление головного мозга. После длительного пассирования вируса на мышах Тейлер вновь привил его обезьянам. К этому времени вирус был уже ослаблен, и обезьяны страдали лишь очень слабыми приступами желтой лихорадки. Но у животных вырабатывалась полная невосприимчивость к большинству вирулентных штаммов вируса.
В 1936 г. Тейлер создал еще более безвредную вакцину против желтой лихорадки, отобрав ослабленный вирусный штамм из штаммов, длительно пассированных (до 200 раз) в культуре ткани куриного эмбриона.
Вирус полиомиелита был выделен в 1908 г. Ландштейнером, впервые заразившим этой болезнью обезьян. Однако обезьяны — малопригодный объект для поисков ослабленного штамма из-за дороговизны и трудности содержания большого числа животных.
Американский микробиолог Джон Эндерс с двумя молодыми помощниками, Томасом Веллером и Фредериком Роббинсом, в 1948 г. попытался культивировать вирусы в однослойной культуре клеток куриных эмбрионов, обработанных трипсином. Подобные попытки делались и раньше, но всегда оканчивались неудачей, поскольку культура вируса вытеснялась быстро размножающимися бактериями. Однако Эндерс добавил к среде открытый незадолго до этого пенициллин. Последний приостанавливал рост бактерий, никак не влияя на вирус. Вначале Эндерсу удалось успешно культивировать вирус паротита, а затем вирус полиомиелита (1949). Появилась возможность выращивать вирус полиомиелита в достаточном количестве, а значит, и надежда напасть среди сотен штаммов на ослабленный с желательными свойствами. Американский микробиолог Альберт Сейбин успешно селекционировал и очистил в 1957 г. три типа ослабленных вакцинных штаммов для каждого из трех разновидностей полиомиелита и создал эффективную живую вакцину.
Эта вакцина сыграла важнейшую роль в борьбе с полиомиелитом. Массовое распространение получила также живая вакцина против кори. Очень сложно оказалось создать эффективную вакцину против гриппа вследствие ускоренной изменчивости циркулирующих в природе вирусов гриппа («антигенный дрейф»).
Химиотерапия вирусных инфекций достигла определённых успехов, особенно при использовании с профилактической целью. При оспенном и герпетическом поражении роговицы используют 2-иод-2'-дезоксиуридин, блокирующий синтез вирусной ДНК. Метисазон оказался весьма эффективным в отношении оспенной инфекции, подавляя синтез структурных белков вируса. Ингавирин эффективен для профилактики и лечения гриппа и ОРВИ.
6. Развитие фитовирусологии
Актуальность исследований вирусов растений определяется тем, что вред, причиняемый ими сельскому хозяйству очень значителен. В Англии только в 1949 г. от вирусного заболевания — желтухи свеклы — было недополучено 1 млн т сахара.
Вирус табачной мозаики (ВТМ) распространен по всему земному шару. Кроме табака он поражает томаты, петунию, дельфиниум, яблоню и множество других растений. Вирус этот очень устойчив (в сухих растительных остатках он может, например, сохраняться более 50 лет) и исключительно контагиозен.
Во многих странах вырождается от 10 до 50% картофеля, пораженного вирусами. Чтобы в какой-то мере избежать распространения болезни, семенной картофель выращивают в высокогорных районах на высоте 1500-1800 м над уровнем моря или на специальных закрытых участках, защищенных от заноса туда инфекции с ветром или крылатыми формами тлей.
После открытия в 1892 г. Д.И.Ивановским фильтрующегося инфекционного начала следующим важным этапом в науке о вирусах растений явилась работа У. Стенли: в 1935 г. из сока табака, пораженного мозаичной болезнью, он осадил и очистил ВТМ в кристаллическом виде (Нобелевская премия, 1946). В 1936 г. английский ученый Ф. Боуден совместно с Н. Пири показали, что ВТМ состоит не из чистого белка, как считал Стенли, а является нуклеопротеидом. В 1958 г. Р. ФранклиниК. Холмс показали, что ВТМ представляет собой полые палочкообразные цилиндрические образования.
Вирусы растений состоят, как правило, из РНК и белка. До 1968 г. такое строение считалось отличительной особенностью всех фитовирусов, пока Р. Шепард не обнаружил двухцепочечную ДНК у вируса мозаичной болезни цветной капусты.
В 1938 г. Ф. С. Боуден и Н. У. Пири обнаружили, что вирус карликовой кустистости томатов кристаллизуется, образуя ромбические додекаэдры. По данным Р. Маркхема и К. М. Смита (1949), вирус желтой мозаики турнепса кристаллизуется в форме октаэдров. Кристаллические образования самых различных форм считаются характерными именно для вирусов растений.
В 1956 г. в лаборатории Хейнца Френкеля-Конрата в США предварительно очищенный препарат ВТМ был расщеплен действием фенола на белковую часть вирусной частицы и нити нуклеиновой кислоты. В отдельности они не проявляли активности. При их объединении инфекционное свойство нуклеопротеида восстановилось. Х. Френкель-Конрат трактовал это явление как реконструкцию, т. е. разборку и сборку частиц вируса. Было показано также, что свойства штамма вируса определяются исключительно нуклеиновой кислотой.
Более того, оказалось, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеопротеида. Американский ученый А. Зигель с сотр. (1962) экспериментально получили варианты ВТМ, которые, репродуцируясь в тканях растений, вообще не образуют белковой оболочки. Другой вариант этого вируса, как показали электронномикроскопические исследования, хотя и синтезирует белковые оболочки, но они оказываются необычной формы, и нуклеиновые кислоты не имеют возможности проникнуть в них и образовывать нуклеопротеид. При этом нуклеиновые кислоты этих дефектных вариантов ведут себя как полноценные вирусы.
Показано, что вирусные белки могут неспецифично взаимодействовать с нуклеиновыми кислотами различного происхождения. В 1966 г. Р. Мэтьюз и Ж.Гарди произвели сборку белков капсида ВТМ с нуклеиновой кислотой вируса репы. В результате был получен вирус, у которого инфекционное свойство определялось нуклеиновой кислотой вируса репы, а серологические реакции — палочковидной оболочкой ВТМ, собранной из белков капсида (шайбочек). Были также получены подобные палочковидные частицы ВТМ, но только содержащие не вирусную, а дрожжевую кислоту и даже синтетическую РНК.
В ходе исследований, проводимых в СССР и за рубежом, было обращено внимание на тот факт, что в различных тканях растений вирусы распределены весьма неравномерно. В эпидермисе, например, много вирусов мозаики табака или мозаики картофеля, а в клетках меристемы, в точках роста, их может не быть вовсе. Предпринимались попытки, пользуясь хорошо разработанной техникой культуры ткани растений, вырезать в стерильных условиях кусочек такой меристемной ткани и вырастить из него целое и притом здоровое растение. Такая операция незаменима, когда какой-либо ценный сорт растения оказывается целиком зараженным вирусом. В настоящее время таким способом в широких масштабах получают безвирусные растения картофеля, гвоздики, яблони, крыжовника, табака.
Большие работы по выращиванию из верхушечной меристемы свободных от вирусов нарциссов, тюльпанов, гиацинтов и лилий проводятся в Исследовательском институте оранжерейных культур в Великобритании. Они особенно важны ввиду того, что луковичные культуры очень сильно поражаются вирусными заболеваниями, и до сих пор не было найдено радикального способа борьбы с ними.
Различные вирусы растений характеризуются различной температурой инактивации. Наиболее устойчивые, например ВТМ, выдерживают нагревание до 92° в течение 10 мин. Многие вирусы теряют инфекционность после нагревания при температуре 50-60°. За счёт длительного воздействия удается вылечить черенки растений от ряда вирусных заболеваний при относительно низких температурах прогревания.
Вирус хлороза и полосатости сахарного тростника инактивируется при погружении черенков на 30 минут в воду, нагретую до 50°. Р.Антойн (1965) обработал таким образом более 16 000 т черенков, пораженных этим вирусом. Затем, предварительно прорастив их в теплицах, он вырастил свободный от вируса сахарный тростник на 1821 га промышленных плантаций. Термотерапия применяется в борьбе с желтухой персика, при некоторых вирусных заболеваниях земляники, картофеля и других культур в тех случаях, когда удается инактивировать вирус и сохранить живыми клетки растения-хозяина.
Разработка наиболее эффективных противовирусных мероприятий требует знания характерных особенностей различных вирусов растений. Важно также учитывать сходство и различие между вирусами человека и животных, с одной стороны, и вирусами растений — с другой. Ввиду принципиальных различий в химическом составе, плотности, проницаемости и пластичности оболочек клеток растений и животных закономерности проникновения вирусов в организм и их перехода из клетки в клетку у вирусов человека и животных иные, чем у вирусов растений. Частицы вирусов растений очень малы. Например, длина палочки вируса мозаики равна 270 нм, а поперечное сечение — 15 нм.
Чтобы заразить кусочек чувствительной животной ткани, достаточно погрузить ее в жидкость, содержащую вирус животных или человека. Ткани растений инфицировать таким способом не удается, если предварительно не повредить эпидермис. При решении вопроса, каким путем вирус в природных условиях переходит из клетки в клетку, внимание фитовирусологов привлекли плазмодесмы — канальцы диаметром в 20—100 нм, находящиеся в межклеточных мембранах. По ним из зараженной клетки в соседнюю и проникают вирусные частицы одна за другой или даже парами. Согласно электронномикроскопическим исследованиям, диаметр сферических частиц вируса бронзовости листьев томатов от 80 до 120 нм, а просвет плазмодесмы в клетках томатов всего 20—100 нм. Но и для более мелких вирусных частиц, таких, как ВТМ или Х-вирус картофеля, прохождение через плазмодесмы затруднительно. Возможно, вирус переходит из одной клетки в другую без белковой оболочки.
Изучение путей распространения вирусов в природе и их передачи от больных растений к здоровым обнаружило, что в ряде случаев (например, при заболеваниях винограда, томатов, смородины, огурцов) основными переносчиками являются нематоды, и заражение осуществляется через почву. Оказалось, что между нематодами и вирусами существуют сложные взаимоотношения. Например, вирусные заболевания винограда передаются строго определенным видом нематоды, в организме которой они сохраняются дольше, чем в почве. Вирус кольцевой пятнистости табака остается активным в организме нематоды более 8 месяцев.
Вирусная болезнь салата продолжала распространяться в условиях, когда все известные пути распространения вируса были исключены. Оказалось, что источником инфекции являются зооспоры плесневого гриба Olpidium brassicae, в которых вирусные частицы способны сохраняться длительное время. Споры гриба, паразитирующего на салате, зараженном вирусом, распространяются ветром на большое расстояние. Оседая на листьях здоровых растений, они прорастают и вносят таким путем вирусные частицы в клетки салата. Этот же гриб служит носителем вирусов некроза табака, карликовости табака и других. Зооспоры О. brassicae, инфицированные вирусом карликовости табака, передавали инфекцию 35 видам растений, относящимся к 13 семействам. Подобным же образом вирус парши картофеля передаётся грибом Spongospora subterrunae. Вирус способен сохраняться в спорах этого гриба более года. Аналогичные соотношения установлены между грибом Tolymyxa graminis и вирусом мозаики пшеницы, а также между многими другими вирусами и грибами.
Интересно, что низшие грибы служат не только механическими переносчиками вирусных заболеваний, но в ряде случаев и сами поражаются вирусами. Так, в мицелии грибов родов Penicillium, Aspergillus в 1965 г. были обнаружены вирусные частицы диаметром 25—30 нм. У больных грибов уменьшался объем мицелия, но лизиса не наблюдалось.
Заключение
Вирусные заболевания обнаружены практически у всех живых существ — млекопитающих, птиц, пресмыкающихся, земноводных, насекомых, растений, бактерий, микоплазм и др. Хотя первая вакцина против вирусного заболевания — оспы — была предложена еще в XVIII в. Дженнером, а вакцина против бешенства разработана в XIX в. Пастером, основоположником вирусологии по праву считается Ивановский, установивший в 1892 г., что возбудитель табачной мозаики проходит через фильтры, задерживающие бактерии, т. е. имеет очень малые размеры. В 1898 г. Бейеринк показал, что размножение этого агента начинается лишь после его внедрения в цитоплазму клеток растения.
В течение последующих трех десятилетий был открыт ряд вирусов животных и человека, разработаны методы их культивирования в организме животных и в куриных эмбрионах. В 1935 г. Стенли очистил и получил в кристаллическом виде ВТМ. Было доказано, что он является нуклеопротеидом.
Изучение вирусов показало, что они представляют собой совершенно особую форму органической материи (вариант – неклеточная формажизни) и отличаются как от животных, так и от растений. Поскольку вирусы относятся к наиболее просто организованным организмам, они были использованы в качестве модели для решения ряда фундаментальных проблем биологии. Самые крупные открытия были сделаны при изучении бактериофагов, впервые описанных в 1915 г. Твортом. Разработанный Эллисом и Дельбрюком метод изучения одиночного цикла размножения фагов лег в основу количественных методов исследования бактериофагов.
В 1948—1949 гг. Херши и Ротман построили первую генетическую карту фага Т2. Открытие трансдукции — способности фага переносить генетическую информацию от одной бактерии к другой — позволило составить генетические карты бактерий. В 1952 г. Херши и Чейз показали, что для репродукции фага достаточно проникновения в бактериальную клетку его ДНК, которая является носителем генетической информации. В 1956 г. Гирер и Шрамм, а также Френкель-Конрат установили, что у РНК-содержащего ВТМ генетические функции несет РНК. Оказалось, что в вирусных нуклеиновых кислотах содержится информация как для собственной репликации, так и для синтеза белков капсида. Дальнейшее изучение фагов позволило Крику (1953) расшифровать генетический код. С возникновением молекулярной биологии вирусология стала ее составной частью, поскольку вирусы представляют собой субклеточные объекты макромолекулярного уровня.
Многие методы работы с фагами и возникшие при этом концепции были затем использованы для изучения вирусов растений и животных.
Особенно важное значение для работы с вирусами животных и человека имел предложенный Эндерсом (1948) способ их выращивания в однослойных клеточных культурах, а также метод точного количественного определения инфекционных вирусных частиц, разработанный Дюльбекко и Фогт.
Изучение структуры вирусов показало, что все они построены по единому плану и состоят из нуклеиновой кислоты (ДНК или РНК) в одно- или двухцепочечной форме и окружающей ее протеиновой оболочки из отдельных субъединиц; последние расположены по спирали или образуют правильный многогранник. Наиболее сложное строение имеют фаги, состоящие из головки и отростка с чехлом и нитями. Вирусы растений представляют собой образования палочковидной или сферической формы. Вирусы животных и человека обладают сферической или близкой к ней формой. Некоторые из них снабжены внешней оболочкой, состоящей из белков, углеводов и иногда липоидов.
Изучение процессов взаимодействия вирусов и клеток показало, что чаще всего вирус вызывает инфекционный процесс, приводящий к гибели клетки. Реже размножение вируса в клетке происходит без нарушения ее структуры. Своеобразной оказалась форма взаимодействия с клеткой у вирусов, обладающих онкогенной активностью. ДНК-содержащие онкоген-ные вирусы внедряют в геном клетки часть своего генома, а РНК-содержащие — образованную при помощи особого фермента — обратной транскриптазы — комплементарную своей РНК двутяжевую ДНК. Это приводит к опухолевой трансформации клетки: она приобретает способность к непрерывному росту и делению.
После того как было установлено единообразие структуры и функции всех вирусов, оказалось возможным разработать их рациональную классификацию. В ее основу были положены физико-химические свойства вирусных частиц — их размеры, вид входящей в их состав нуклеиновой кислоты, число структурных субъединиц в капсиде, тип симметрии капсида (спиральный, кубический или комплексный), наличие или отсутствие внешней оболочки, место ее формирования (у ядерной, интерцитоплазматических или поверхностной мембран клетки), наличие или отсутствие в ее составе липоидов. В соответствии с этой классификацией производится идентификация вновь выделенных вирусов — определение их родовой и видовой принадлежности.
Дата добавления: 2016-03-04; просмотров: 1088;