ПРЕВРАЩЕНИЕ В ГЕНЕРАТОР
Человек, изучающий электронику, подобен туристу, плывущему мимо красивейших берегов Крыма или Кавказа и вынужденному наблюдать эти берега лишь с борта корабля. Человек, изучающий электронику, очень часто проплывает мимо изумительно красивых явлений природы, мимо очень важных, можно даже сказать – фундаментальных, научных проблем и не имеет возможности сойти на берег, чтобы познакомиться с ними. Иначе путешествие слишком затянется или даже изменится его конечный маршрут. (Последнее, кстати, совсем неплохо, но только не в начале пути. Есть немало примеров того, как радиоинженеры уходили в биологию, ракетостроение, математику, химию, медицину, геофизику, сельское хозяйство, астрономию и другие области. Обогащенные методами и идеями электроники, они открывали в этих областях науки новые направления или, подобно катализатору, резко ускоряли ход исследований.)
Мы с вами уже прошли мимо таких интересных и общих проблем как преобразование структуры вещества, универсальность гармонических (синусоидальных) колебаний, преобразование спектра сигнала, согласование генератора с нагрузкой, управление мощными потоками энергии с помощью слабых сигналов и др. Сейчас нам предстоит встреча еще с одним общим, универсальным явлением – с возникновением автоколебаний.
Мы часто встречаем механические автоколебания: вибрация самолетного крыла и автоколебания в гидравлических системах (вам наверняка приходилось слышать «поющий» водопроводный кран), и автоколебания далеких звезд, и автоколебания в мире атома, автоколебания при ядерных реакциях и электромагнитные автоколебания. Есть серьезные основания думать, что автоколебания играют важнейшую роль и в живой природе, что сама жизнь – это огромное многообразие разного рода, разной степени сложности биохимических автоколебаний.
Что же такое автоколебания? Энциклопедический словарь определяет их так: «…незатухающие колебания, которые могут существовать в какой‑либо системе в отсутствие переменного внешнего воздействия, причем амплитуда и период колебаний определяются свойствами самой системы». Применительно к транзисторному устройству, где создаются автоколебания (вы уже, конечно, догадались, что именно такое устройство и называется транзисторным генератором), это определение нужно понимать следующим образом. Мы подводим к генератору только питающее постоянное напряжение, а он дает нам непрерывные, непрекращающиеся электрические колебания (конечно, когда батарея разрядится, то колебания прекратятся, но об этом сейчас не стоит говорить). Генератор создает в своих цепях переменный ток и переменное напряжение, частота и амплитуда которых зависят только от элементов самой транзисторной схемы.
Очевидно, это определение направило ваши мысли к колебательному контуру. Ведь в нем тоже под действием постоянной порции энергии, например под действием энергии, полученной при зарядке конденсатора, возникают электрические колебания. И частота этих колебаний тоже зависит только от элементов самой системы – от индуктивности L к катушки к емкости Ск конденсатора (Воспоминание № 20). Однако собственные колебания в контуре постепенно затухают, и таким образом нарушается основной элемент определения – «…незатухающие колебания».
И все же мы обратились к колебательному контуру не напрасно. В сочетании с транзисторным усилителем он позволяет получить самый настоящий генератор автоколебаний.
Почему затухают колебания в контуре? Потому что часть энергии теряется на активном сопротивлении потерь Rк и постепенно оно отбирает и превращает в тепло или в излучения всю запасенную в контуре энергию. Отсюда следует: чтобы колебания в контуре стали незатухающими, нужно ликвидировать сопротивление потерь. Или каким‑то образом его скомпенсировать.
Вы уже, конечно, вспомнили, что у нас в арсенале есть эффективное средство борьбы с сопротивлением – Rк . Это положительная обратная связь, которую мы уже применяли в регенеративном усилителе (рис. 99). Но только, если в усилителе обратная связь не должна полностью компенсировать потери, в генераторе потери должны быть скомпенсированы полностью.
Здесь‑то как раз и проходит граница между усилителем и генератором. До тех пор, пока в контуре еще есть сопротивление Rк , мы имеем усилитель. Но как только это сопротивление исчезает, как только обратная связь полностью компенсирует все потери, усилитель становится генератором, в нем происходит самовозбуждение. Это значит, что на вход усилителя уже не нужно подавать управляющий сигнал (когда‑то его называли «возбуждением», и отсюда слово «самовозбуждение»). Как только в контур попадет порция энергии – а это может произойти при любом толчке тока, например при включении питания, – то в контуре возникнут колебания, которые благодаря достаточно сильной обратной связи станут незатухающими. Рожденный в контуре и усиленный транзистором сигнал вновь возвращается в контур, чтобы участвовать в управлении работой транзистора. Транзистор сам создает для себя управляющий сигнал, работает в режиме самовозбуждения, а значит, генерирует незатухающий переменный ток. И, конечно же, поставщиком энергии для него, как всегда, является коллекторная батарея.
Чтобы автогенератор давал электрические колебания с неизменной амплитудой, нужно решить чрезвычайно сложную задачу: нужно, чтобы вносимое в контур отрицательное сопротивление было в точности равно собственному сопротивлению потерь, чтобы в контур через цепь обратной связи поступало ровно столько энергии, сколько нужно для компенсации потерь. Не меньше и не больше, потому что, если ввести в контур хоть чуть‑чуть меньше энергии, чем нужно, колебания рано или поздно затухнут. А если ввести хоть немного лишней энергии, то амплитуда колебаний будет расти. Осуществить столь точную, ювелирную дозировку вводимой в контур энергии просто невозможно. Если даже в какой‑то момент путем тщательнейшего подбора расстояния между контурной катушкой Lк и катушкой обратной связи Lксв удастся установить необходимый баланс, то уже через мгновение он по какой‑либо причине окажется нарушенным. То ли легкая вибрация (например, из‑за проехавшего по улице автомобиля) сдвинет катушки на какой‑нибудь микрон, то ли напряжение батареи уменьшится на какой‑нибудь микровольт, то ли сопротивление проводов увеличится на какие‑то доли ома из‑за легкого дуновения ветерка. Одним словом, автогенератор всегда находится в неустойчивом динамическом состоянии, и, для того чтобы амплитуда колебаний оставалась постоянной, нужно ввести некое автоматическое устройство, которое все время регулировало бы степень положительной обратной связи.
Подобная задача уже возникала перед нами, когда мы создавали систему автоматической стабилизации режима транзисторного усилителя. Уже тогда мы отметили, какую большую роль играет в электронной аппаратуре малая автоматизация. Еще один пример простейшей схемы авторегулировки мы встречаем в генераторе незатухающих колебаний, например, в виде схемы, постепенно запирающей транзистор, с увеличением управляющего сигнала.
Итак, для того чтобы усилитель превратился в генератор и давал незатухающие электрические колебания, нужно выполнить два условия. Их обычно называют условием фаз и условием связи (рис. 114).
Рис. 114. Для получения автоколебаний необходимо выполнить два условия: условие фаз и условие связи.
(Рис. 110–113 см. на цветной вклейке между стр. 288–289)[2].
Выполнить условие фаз – это значит подать из выходной цепи во входную сигнал именно в такой фазе, чтобы он компенсировал потери энергии. Проще говоря, в автогенераторе обратная связь должна быть положительной. Выполнить условие связи – значит подать из выходной цепи во входную сигнал настолько мощный, чтобы он полностью компенсировал все потери энергии во входной цепи.
Как мы только что видели по цепи обратной связи, энергию нужно передавать даже с некоторым избытком, в расчете на то, что система авторегулировки сама будет поддерживать нужный уровень поступающего во входную цепь сигнала.
Схема, которую мы до сих пор рассматривали, называется схемой с трансформаторной обратной связью: контурная катушка Lк и катушка обратной связи Lос образуют своего рода трансформатор. Условие фаз в этой схеме выполняется только при определенном включении выводов катушек. И если генератор, собранный по трансформаторной схеме, почему‑либо не работает, то прежде всего стоит предположить, что катушки включены неверно и условие фаз не выполняется – обратная связь получается не положительной, а отрицательной. В этом случае нужно поменять местами выводы одной из двух катушек и повернуть таким образом фазу напряжения, поступающего на вход генератора, на 180°. Если не выполняется условие связи, то следует сблизить катушки или увеличить число витков катушки Lос .
Кроме генератора с трансформаторной обратной связью, существуют еще две схемы автогенераторов с колебательным контуром (очень скоро мы познакомимся с генераторами, в которых контура нет). Это так называемые трехточечные схемы (рис. 115) с емкостной или же с индуктивной обратной связью.
Рис. 115. Частота автоколебаний определяется параметрами электрической цепи, в частности индуктивностью и емкостью контура.
Трехточечные схемы получили такое название потому, что в них транзистор подключается к контуру в трех точках и напряжение Uос обратной связи снимается с некоторой части самого контура. В индуктивной трехточечной схеме Uос снимается с части катушки Lк , а в емкостной схеме – с конденсатора С''к , который вместе с С'к входит в контур. Общая емкость контура в этом случае определяется двумя последовательно соединенными конденсаторами (Воспоминание № 14).
Условие фаз в обеих схемах выполняется только при таком подключении контура к транзистору, когда в центре оказывается эмиттер, а по краям – коллектор и база. Если не выполняется условие связи, то в индуктивной схеме нужно несколько переместить среднюю точку подключения к контуру с таким расчетом, чтобы между базой и эмиттером оказалось большее число витков. При этом увеличится и напряжение обратной связи Uос . В емкостной схеме в подобном случае нужно уменьшить емкость конденсатора С''к , с которого снимается напряжение Uос так как этот конденсатор вместе с С'к образует своего рода делитель напряжения. Чем меньше С''к , тем больше его емкостное сопротивление (Воспоминание № 13), тем большая часть контурного напряжения оказывается напряжением обратной связи.
Частота колебаний автогенератора во всех случаях определяется данными деталей контура LкСк . Оговорка «в основном» необходима потому, что в контур входят еще и невидимые индуктивности, емкости и сопротивления. И прежде всего емкости коллекторного и эмиттерного переходов. Они суммируются с параметрами самого контура и таким образом влияют на частоту. В случае необходимости можно довольно просто изменить частоту колебаний, изменив для этого Lк или Ск (рис. 115).
Автогенератор с колебательным контуром при правильном выборе режима транзистора дает напряжение, довольно близкое к синусоидальному. Однако синусоидальное напряжение можно получить и без контура – в так называемом RС‑генераторе. В самом упрощенном виде принцип действия этого генератора можно описать так: в нем создана цепь обратной связи, по которой проходят колебания разных частот, но только для одной из них выполняется условие фаз, и именно на этой частоте происходит самовозбуждение (рис. 116).
Рис. 116 . В RC‑генераторе для выполнения условия фаз используются фазовращающие цепочки из конденсаторов и резисторов.
В цепь обратной связи генератора входят три цепочки, каждая из которых включает резистор и конденсатор. Отсюда и само название RС‑генератор. Мы уже знаем, что конденсатор создает сдвиг фаз между током и напряжением (Воспоминание № 13), а резистор никакого сдвига фаз не создает. Вместе они сдвигают фазу на некоторый угол φ , который лежит в пределах между 0 и 90°. Угол сдвига фаз зависит от двух факторов – от соотношения между R и С и от частоты (Воспоминание № 16). С увеличением частоты, например, емкостное сопротивление хс уменьшается, его роль в общей последовательной цепи становится менее ощутимой, и угол сдвига фаз также становится меньше. На более низких частотах конденсатор становится главным действующим лицом, и угол сдвига фаз приближается к 90°.
Всегда существует такая частота, на которой угол сдвига фаз между током и напряжением, а значит, между напряжением, подводимым к RС‑цепочке, и напряжением, которое с нее «понимается, равен 60°. Если соединить последовательно три такие цепочки, то они создадут на какой‑то одной частоте (обратите внимание – только на одной определенной частоте!) общий угол сдвига фаз 180°. Именно на этой частоте в RC‑генераторе будет выполняться условие фаз, и именно эту частоту он будет генерировать. Если нужно изменить частоту генерации, то достаточно изменить данные RС‑цепочек. При уменьшении сопротивления R и емкости С условие фаз будет выполняться для более высокой частоты, а при их увеличении – для более низкой.
Теперь настал момент несколько отвлечься от основной темы и выполнить данное в конце предыдущего раздела обещание: объяснить, как возникает самовозбуждение в усилителе низкой частоты.
В усилителе НЧ всегда существует обратная связь. Это может быть отрицательная обратная связь, которую мы вводим для уменьшения искажений. Это может быть и неизвестно какая обратная связь, которая появляется неизвестно каким путем – через источники питания, через общие цепи смещения, через внутренние сопротивления транзисторов и т. д.
Вполне вероятно, что для какой‑то частоты, а может быть, и для целой группы частот, элементы обратной связи создадут такой сдвиг фаз, что она окажется положительной. А если еще при этом будет выполняться необходимое для самовозбуждения условие фаз, то усилитель, естественно, превратится в генератор.
Устранить самовозбуждение усилителя можно, например, так: нужно добиться, чтобы в нем не выполнялось условие связи. А для этого, в свою очередь, нужно снизить усиление одного или нескольких каскадов, уменьшив, например, у них сопротивления нагрузки. Правда, такой способ борьбы с самовозбуждением трудно признать удачным, и, прежде чем прибегать к этой крайней мере, стоит поискать другие пути. Например, ввести дополнительные развязывающие фильтры; зашунтировать батарею конденсатором большой емкости; отсоединить цепи отрицательной обратной связи или, по крайней мере, изменить данные их деталей; поочередно замыкать выходные цепи транзисторов конденсаторами сравнительно небольшой емкости, по нескольку тысяч пикофарад; пробовать увеличить емкость переходных конденсаторов, и др.
Генерация может возникать и в усилителе ВЧ, причем здесь для выполнения обоих условий самовозбуждения не так уж много надо. Сигнал нужной фазы и нужного уровня может, например, попадать из выходной цепи во входную через какую‑нибудь паразитную емкость, образованную двумя близко расположенными проводами. Или через общее магнитное поле двух неудачно расположенных катушек. К сожалению, генерация в усилителе ВЧ не всегда проявляет себя в виде специфического «писка». Может так случиться, что усилитель ВЧ возбуждается, на слух это не обнаруживается, а приемник в результате такого самовозбуждения не работает. Чтобы найти и устранить самовозбуждение усилителя ВЧ, нужно попробовать уменьшить усиление каскадов, а может быть, временно даже отключить один из них.
Устранение паразитного самовозбуждения усилителя во всех случаях – дело не простое и кропотливое. Оно требует терпения и, самое главное, понимания физических процессов, с которыми связано превращение усилителя в генератор.
Существует целый ряд генераторов, которые дают колебания не синусоидальной, а сложной формы, например прямоугольные импульсы, пилообразное напряжение, прерывистые, как бы модулированные колебания и т. п. Несмотря на изменение формы тока, принцип действия всех генераторов остается неизменным: положительная обратная связь приводит к тому, что электрические колебания, используя энергию коллекторной батареи, сами себя поддерживают, создают непрерывный процесс, в результате которого меняется коллекторный ток транзистора.
Один из весьма популярных генераторов колебаний сложной формы – это мультивибратор. Само его название, переведенное на русский язык, означает «генератор, создающий много разных колебаний». В распространенной схеме мультивибратора работают два транзистора, причем выход одного из них связан со входом другого (рис. 117).
Рис. 117. В мультивибраторе колебания возникают в результате поочередного запирания транзисторов .
Это приводит к тому, что транзисторы поочередно открываются и запираются: если один из них запирается, то он отпирает своего запертого соседа, а тот, в свою очередь, открывшись, запирает своего избавителя, открываясь при этом сам. Процесс этот происходит непрерывно, чем‑то напоминая перебрасывание мяча через волейбольную сетку (слова «отпирается» и «запирается» применительно к транзистору, как всегда, означают пропускание коллекторного тока под действием «минуса» на базе и прекращение этого тока под действием «плюса»). Частота колебаний, которые дает мультивибратор, зависит от того, настолько быстро происходит заряд и разряд конденсаторов С' и С . Изменяя емкость этих конденсаторов, а также сопротивление резисторов R'б и Rб , через которые происходит заряд и разряд конденсаторов, можно в довольно широких пределах менять частоту колебаний.
Рассмотрим несколько практических схем транзисторных генераторов.
Простейший генератор, выполненный по трехточечной схеме с индуктивной обратной‑связью (рис. 118–1 ), может заменить в вашей квартире электрический звонок.
рис. 118 –1
Роль контурной катушки с отводом в таком звонке выполняет автотрансформатор, намотанный на любом сердечнике сечением 3 см2 (можно взять, например, сердечник от трансляционного громкоговорителя). Данные секций: Iв содержит 25 витков, Iа и Iб – по 35 витков провода ПЭ 0,45. Непосредственно к секции Iв подключен низкоомный громкоговоритель. Частоту колебаний можно менять, подбирая емкость конденсатора С1 , который входит в колебательный контур.
Следующий генератор (рис. 118–2 ) дает прерывистые колебания звуковой частоты, чем‑то напоминающие сигналы нашего первого спутника, знаменитое «Бип‑бип‑бип…». Сам генератор звуковой частоты собран по трехточечной схеме с емкостной обратной связью. В качестве катушки L1 можно включить обмотку выходного или согласующего трансформатора.
рис. 118 –2
Прерывистая генерация получается благодаря периодическому запиранию транзистора Т1 напряжением, которое появляется на R*3 . После того как транзистор запрется и колебания срываются, запирающее напряжение падает, и транзистор вновь открывается. Частота отпирания транзистора, а значит, и частота появления «пакетов» звуковых колебаний зависят от данных зарядной цепочки R3С3 . Подбором этих деталей можно добиться того, что звуковые сигналы будут появляться один – три раза в секунду. Частота звуковых колебаний, то есть сам тон звука, в основном определяется деталями контура L1C2 . При налаживании генератора может оказаться полезным заземлить базу Т1 через конденсатор в несколько микрофарад. На транзисторе Т2 собран усилитель, в коллекторную цепь которого включается телефонный капсуль или громкоговоритель с выходным трансформатором.
Периодический заряд конденсатора используется в другом, очень простом двухтранзисторном генераторе (рис. 118–5 ), который дает два «сорта» электрических сигналов – пилообразный и близкий к прямоугольному.
рис. 118 –5
В первый момент после включения оба транзистора заперты, а конденсатор С1 через R3 заряжается питающим напряжением. При этом запирающее напряжение уменьшается, и в какой‑то момент транзисторы оказываются открытыми. Через них разряжается конденсатор, и весь процесс начинается сначала. При указанных на схеме величинах продолжительность одной «пилы» составляет около 3,5 сек. Чтобы уменьшить это время, то есть увеличить частоту колебаний, нужно ускорить процесс заряда конденсатора, уменьшив С1 или R3 . Особенность генератора – высокое выходное сопротивление, и его нужно подключать к усилителю с первым каскадом по схеме ОК.
Во многих практических схемах RС‑генераторов используются два транзистора, так как при этом появляется запас усиления и легче выполнить условие связи. Сигнал поступает с выхода второго транзистора на вход первого через обычную линию передачи, состоящую из трех RС‑цепочек, и каждая из них поворачивает фазу на 60°. При подсчете общего сдвига фаз нужно помнить, что на коллекторе и на базе одного и того же транзистора напряжения противофазны (когда на базе растет напряжение, на коллекторе оно уменьшается). Если же нагрузка включена в эмиттерную цепь (схема ОК), то на этой нагрузке напряжение совпадает по фазе с напряжением на базе (когда напряжение на базе растет, то увеличивается коллекторный ток и напряжение на эмиттерной нагрузке тоже увеличивается).
После этих предупреждений станет понятно, как получается необходимый сдвиг фаз в практической схеме RС‑генератора, приведенной на рис. 118–3 .
рис. 118 –3
Транзистор Т2 не поворачивает фазу обратной связи, транзистор Т1 поворачивает фазу на 180° и на столько же поворачивает фазу линия передачи, состоящая из трех RС‑цепочек. Общий сдвиг фаз равен 360°, то есть равен нулю, и условие фаз выполняется.
Для приведенных на схеме данных частота колебаний составляет примерно 5–15 гц. Такие низкочастотные колебания используются в электромузыкальных инструментах для создания так называемого вибрато – своеобразной модуляции звука. Если уменьшить емкость и сопротивление RС‑цепочек, то генератор будет давать более высокую частоту.
В качестве низкочастотного генератора радиолюбители чаще всего используют мультивибратор – он прост по схеме, не требует каких‑либо сложных деталей, начинает работать без всякого налаживания и позволяет очень легко менять частоту колебаний. Два типичных мультивибратора вы найдете на рис. 118–6 , где приводится схема игрушки «Спутник».
рис. 118 –6
Мультивибратор, выполненный на транзисторах Т1 и Т2 ,– это, по сути дела, самостоятельный блок, который дает колебания с частотой около 1 кгц. Увеличивая С1С2 или в крайнем случае R3R4 (сопротивление этих резисторов влияет не только на частоту, но и на режим триодов), можно уменьшить эту частоту вплоть до долей герца. Так, в частности, во втором мультивибраторе, собранном на транзисторах Т4Т5 , благодаря увеличению емкости разделительных конденсаторов до 25 мкф частота понижена до 3 гц.
Второй мультивибратор является своего рода ключом, подающим питание на первый, «звуковой» мультивибратор. В результате, так же как и в схеме рис. 118–2 звук получается прерывистым и напоминает сигналы первого спутника.
Периодическое включение «звукового» мультивибратора происходит потому, что он фактически является коллекторной нагрузкой одного из транзисторов (Т4 ) «ключевого» (правого по схеме) мультивибратора. Когда этот транзистор заперт, то на нагрузке, то есть на «звуковом» мультивибраторе, нет питающего напряжения (при I к = 0 напряжение Uн = Iк ·Rн также равно нулю). Когда же транзистор Т4 отпирается, то сопротивление его падает и напряжение источника почти полностью поступает на коллекторную нагрузку – на «звуковой» мультивибратор. Поскольку этот мультивибратор вместе с сигнальной лампочкой от карманного фонаря потребляет сравнительно большой ток – больше 100 лш, – то в схему пришлось ввести еще один, уже довольно мощный транзистор П201 (Т3 ). Он помогает транзистору Т4 выполнять трудную работу и легко пропускает нужный ток. Этот транзистор можно назвать полупроводниковым реле, которое, получив команду от своего управляющего транзистора (Т4 ), подает питание на «звуковой» мультивибратор.
Еще одно применение мультивибратора – электронный метроном (рис. 118–7 ), то есть генератор, отбивающий для музыканта ровный такт во время репетиций.
рис. 118 –7
Частоту следования импульсов можно менять скачкообразно переключателем П 1 или плавно одним из резисторов R5 или R6 (в зависимости от положения переключателя). Этот же мультивибратор с усилителем Т3 , если резко уменьшить емкость переходных конденсаторов, можно использовать как самостоятельный звуковой генератор, например, для обучения азбуке Морзе или в простейшем электромузыкальном инструменте. Для увеличения выходной мощности можно в качестве Т3 включить транзистор П201.
Очень простой мультивибратор можно собрать на транзисторах разной проводимости (рис. 118–4 ).
рис. 118 –4
Частоту следования импульсов и их продолжительность здесь легко менять в широких пределах: с увеличением С1 и R1 возрастает длительность импульсов, а с увеличением С1 и R2 возрастает продолжительность пауз между ними. При указанных на схемах величинах частота повторения импульсов оказывается очень низкой – около одного импульса в секунду.
Простой электромузыкальный инструмент «поющий стакан» (рис. 111–4 ) можно собрать на основе так называемого блокинг‑генератора.
рис. 111 –4
Так же как в знакомом нам генераторе синусоидальных колебаний с трансформаторной обратной связью (рис. 114), энергия из выходной цепи во входную передается через трансформатор. Однако самовозбуждение блокинг‑генератора не связано с собственными синусоидальными колебаниями в контуре. Колебания в блокинг‑генераторе возникают в результате довольно сложных лавинообразных процессов, которые приводят к периодическому запиранию и отпиранию транзистора. И, как это уже не раз бывало в других знакомых нам генераторах, частота колебаний определяется данными зарядной RС‑цепочки.
Выходное сопротивление блокинг‑генератора довольно велико, и его можно подключать лишь к усилителю НЧ с высокоомным входом, например ко входу звукоснимателя лампового приемника или радиолы. Для подключения блокинг‑генератора к транзисторному усилителю НЧ нужно ввести дополнительный первый усилительный каскад по схеме ОК или применить готовый блок усиления, схема которого приведена на рис. 104–1 . Роль зарядного резистора выполняет вода, налитая в стакан и включенная в цепь с помощью двух длинных электродов из тонкой жести или из толстой проволоки.
Если поднимать или опускать эти электроды или один из них, то объем воды, включенной в цепь, будет меняться, а значит, будет меняться и частота колебаний блокинг‑генератора. Элементы цепи подобраны таким образом, чтобы генератор работал в диапазоне звуковых частот и чтобы, перемещая один из электродов, можно было бы исполнять простейшие мелодии. В качестве Тр1 можно взять БТК (блокинг‑трансформатор кадровый) от любого телевизора.
На изменении сопротивления зарядной цепочки основано изменение тона в другом простейшем клавишном музыкальном инструменте (рис. 111–1 ).
рис. 111 –1
Сопротивления, определяющие тот или иной тон, образованы двумя резисторами, например R'a и R''a чтобы подбором меньшего сопротивления легче было бы осуществить точную настройку инструмента. Еще проще подгонять частоту генератора, если в зарядную цепь включить переменные резисторы. Настройку генератора нетрудно сделать с помощью рояля. Ориентировочно сопротивление R'a + R''a должно составлять 150 + 200 ком, а каждое следующее должно быть меньше примерно на 10 ком.
Клавиши легко изготовить самому из тонкой и упругой стальной, латунной или гетинаксовой пластинки, закрепив на ней простейшие контакты (рис. 111–3 ).
рис. 111 –3
После того как электромузыкальный инструмент настроен и налажен, можно попытаться сделать более богатым его звучание, ввести несколько цепей формирования тембра. Изменение тембра – это всегда изменение формы сигнала, или, иначе говоря, его искажение. Поэтому в систему формирования тембра могут, например, входить диоды, срезающие половину сигнала. Или диоды, работающие в режиме ограничения (рис. 27–9 ). Формирование тембра в электромузыкальных инструментах лишь расширяет наш список возможных «профессий» полупроводникового диода, но еще далеко не завершает этот список.
Дата добавления: 2016-02-24; просмотров: 5376;