Лекция 18. Физиология терморегуляции.

По способности поддерживать постоянную температуру тела животные делятся на пойкилотермных, гомойотермных и гетеротермных.

Пойкилотермные организмы (от греч. poikilos — изменчивый) не способны поддерживать температуру тела на постоянном уровне, так как они вырабатывают мало тепла и имеют несовершенные механизмы его сохранения.

Гомойотермные организмы (от греч. homeo — подобный, одинаковый), к которым относится и человек, вырабатывают много тепла, отличаются относительным постоянством температуры тела, незначительно изменяющейся в течение суток.

Гетеротермные организмы (от греч. heteros — другой) отличаются тем, что колебания температуры их тела превышают границы, свойственные гомойотермным животным. Это характерно для ранних этапов онтогенеза, зимней спячки некоторых гомойотермных животных, а также для млекопитающих и птиц с очень малыми размерами тела.

 

 

Температурный фактор определяет скорость протекания ферментативных процессов, всасывания, проведения возбуждения и мышечного сокращения.

Известно, что в поверхностных и глубоких участках тела человека температура различна. Внутренние области тела, составляющие примерно 50 % его массы, названы «ядром». Сюда относят мозг, сердце, печень и другие внутренние органы. Температура «ядра» варьируют незначительно, составляя величину порядка 36,7—37°С. Вместе с тем в разных участках «ядра» показатели температуры могут несколько.

Для клинических целей оценка температуры «ядра» проводится в определенных, легко доступных участках тела, температура которых практически не отличается от температуры внутренних органов. Такими доступными участками являются прямая кишка, полость рта, подмышечная впадина. Известно, что оральная (подъязычная) температура обычно ниже ректальной на 0,2—0,5 °С, аксиллярная (в области подмышечной ямки) ниже на 0,5—0,8 °С. При плотном прижатии руки к грудной клетке граница внутреннего слоя «ядра» почти доходит до подмышечной впадины, однако для достижения этого должно пройти около 10 мин. Аксиллярная температура здорового человека равна 36,0— 36,9 °С.

Температура поверхностного слоя тела толщиной 2,5 см, называемого «оболочкой» тела, варьирует в разных областях тела при разной температуре окружающей среды. При комфортной окружающей температуре средняя температура кожи обнаженного человека составляет 33—34 °С. При этом температура кожи стопы значительно ниже температуры проксимальных участков нижних конечностей и в еще большей степени — туловища и головы. Температура кожи в области стопы в комфортных условиях может быть равна 24—28 °С, а при изменениях внешней температуры — 13—53 °С, что определяется двумя факторами — температурой внешней среды и кровоснабжением кожи стопы.

У большинства млекопитающих температура тела соответствует диапазону 36—39 °С, несмотря на широкие вариации размеров тела у различных животных. Интенсивность метаболизма (теплопродукции) определяется как массой тела, так и величиной отдачи тепла с поверхности тела. В соответствии с этим теплопродукция на 1 кг массы должна быть выше у животных с небольшими размерамитела и с большим, чем у крупных животных, отношением площади поверхности к величине массы тела.

Температура тела определяется соотношением двух процессов — теплопродукции и теплоотдачи. Когда они не соответствуют друг другу и возникает угроза изменений температуры тела, процессы регуляции в составе функциональной системы терморегуляции адаптивно меняют теплопродукцию (химическая терморегуляция) и теплоотдачу (физическая терморегуляция). Тем самым обеспечивается относительная стабильность температурной константы внутренней среды организма, что было названо К.Бернаром основой «свободной, независимой жизни». В самом деле, температура тела обнаженного человека может оставаться стабильной в течение нескольких минут при изменениях температуры окружающей среды в пределах 21—53 °С.

Под химической терморегуляцией понимают изменения интенсивности метаболических экзотермических реакций, в ходе которых образуется тепло. При действии на организм человека холода образование тепла может повыситься в 3—5 раз.

Различают сократительную и несократительную теплопродукцию.

Сократительная теплопродукция связана с произвольными и непроизвольными сокращениями скелетных мышц.

Произвольные сокращения могут привести к многократному увеличению теплообразования, при этом повышаются и теплопотери за счет усиления отдачи тепла конвекцией.

Одним из видов непроизвольной теплопродукции является дрожь — специфический тип мышечного сокращения, возникающий у человека при значительном снижении температуры внешней среды организма и повышающий образование тепла в несколько раз. В отличие от теплообразования при произвольных мышечных сокращениях теплообразование при дрожи является экономным способом теплопродукции, так как особый тип сократительной активности высокопороговых двигательных единиц при дрожи обеспечивает переход в тепловую энергию почти всей энергии мышечного сокращения.

Другим видом непроизвольной теплопродукции являются терморегуляторные тонические сокращения (терморегуляторный тонус), развивающиеся в области мышц спины, шеи и в некоторых других областях. Теплопродукция при этом возрастает примерно на 40—50 %. Терморегуляторные тонические сокращения скелетных мышц начинаются при снижении температуры внешней среды примерно на 2°С относительно уровня комфорта. Такие сокращения имеют характер зубчатого тетануса, близкого к режиму одиночных сокращений. Терморегуляторный тонус является более тонким средством повышения теплопродукции, чем два предыдущих.

Несократительный термогенез также является механизмом химической терморегуляции, значительно выраженным в адаптированном к холоду организме. Доля такого механизма в обеспечении прироста теплопродукции на холоде может составлять 50—70 %. Развивается это явление в различных тканях. Специфическим субстратом такой теплопродукции считается бурая жировая ткань, после удаления которой устойчивость организма к холоду существенно снижается. Масса бурой жировой ткани, обычно составляющая 1— 2 % массы тела, при адаптации к холоду может увеличиваться до 5 % массы тела. Уровень энергетического обмена данной ткани, выраженный на единицу массы, более чем втрое превышает уровень работающих мышц;

скорость окисления жирных кислот в бурой жировой ткани в 20 раз превышает эту ско­рость в белой жировой ткани.

Терморегуляторная роль бурой жировой ткани полностью неясна. Предполагают, что она является богатым источником свободных жирных кислот — субстрата окислительных реакций, скорость которых при действии холода возрастает. В самой бурой жировой ткани при действии холода растут кровоток и уровень обмена веществ, увеличивается температура, несмотря на снижение температуры кожи над этой тканью. Отсюда возникла популярная в настоящее время гипотеза о калориферной роли бурой жировой ткани: при действии холода она обогревает близлежащие крупные сосуды, направляющие кровь к головному мозгу. У взрослого человека эта ткань локализована в области шеи, в межлопаточной области, в средостении около аорты, крупных вен и симпатической цепочки. В зимнее время года у людей, работающих вне помещения, бурая жировая ткань гипертрофирована и более активна, чем в летнее время.

Теплоотдача осуществляется посредством внутреннего и внешнего потоков тепла. Более половины внутреннего потока от источников образования тепла к поверхности тела обеспечивается путем конвекции кровью, остальное тепло проводится через другие ткани. При этом теплопроводность ткани зависит от ее толщины и количества жировой клетчатки, а также от уровня кровотока в этом слое.

Роль кровотока связана с тем, что онможет значительно варьировать за счет изменений просвета сосудов, в частности состояния артериоло-венулярных анастомозов.

Кровоснабжение поверхностных участков тела играет весьма важную терморегуляторную роль, обеспечивая внешний поток тепла. «Игра» сосудов кожи пальцев может менять кровоток в ней в 100 раз. При полной вазодилатации теплоотдача может увеличиться в 8 раз по сравнению с уровнем полной вазоконстрикции.

Теплопроводность тканей, кроме того, определяется характером использования противоточной системы сосудов, которая имеется, например, в конечностях. Так, в условиях холода венозная кровь оттекает в основном не по поверхностным венам, как это бывает в тепле, а по глубоким венам. В результате венозная кровь согревается кровью параллельно проходящих рядом артерий и не охлаждается в той степени, как это бывает при по­верхностном потоке крови.

Однако значительное снижение кровотока в поверхностных слоях тела при действии холода может приводить к нарушению кровоснабжения этих тканей и отморожениям..

Наружный поток тепла обеспечивается путем его проведения, конвекции, излучения и испарения.

1. Если кожа теплее окружающего воздуха, происходит естественная конвекция, т.е. перемещение нагреваемого кожей слоя воздуха вверх и его замещение более холодным воздухом. Форсированная конвекция, имеющая место при движениях тела или воздуха, значительно повышает интенсивность теплоотдачи.

2. При погружении человека в воду, температура которой ниже нейтральной (для большинства людей эта температура воды равна 31—36 °С), может в 2—4 раза повыситься наружный поток тепла за счет проведения, так как теплопроводность воды в 25 раз превышает теплопроводность воздуха. Основным механизмом отдачи тепла телом человека в воде является, однако, конвекция. За счет нее охлаждающее действие проточной воды в 50—100 раз превышает воздействие воздуха. Если температура воды близка к нулю («ледяная вода»), то тело человека охлаждается со скоростью 6 °С в час, а через 1— 3 ч может наступить смерть.

Плавание в воде, температура которой ниже уровня комфорта, значительно повышает отдачу тепла конвекцией. Увеличение содержания в организме жира может ограничить такой эффект.

3. Теплоотдача излучением обеспечивает­ся инфракрасными лучами с длиной волны 5—20 мкм. Эти лучи испускаются кожей при наличии на некотором расстоянии от нее предметов с более низкой температурой. Обнаженный человек может терять таким путем до 60 % тепла.

4. Около 20 % теплоотдачи тела человека в условиях комфортной температуры среды осуществляется за счет испарения. Этот путь является единственным способом отдачи тепла в окружающую среду, если ее температура оказывается равной температуре тела. Путем испарения 1 л воды человек может отдать треть всего тепла, вырабатываемого в условиях покоя в течение суток. Повышение скорости потоотделения является одним из основных механизмов адаптации к жаркому климату.

Существует два варианта испарения воды с поверхности тела: 1) испарение пота в результате его выделения, 2) испарение воды, оказавшейся на поверхности путем диффузии, — «неощутимые» потери воды. Последний механизм обеспечивает потери воды (до 600 мл в сутки) и тепла, например, через слизистые оболочки воздухоносных путей. Значительный вклад в обеспечение адаптивных механизмов изменения теплоотдачи вносит поведенческий компонент функциональной системы терморегуляции. В условиях холода поведенческая регуляция может быть весьма эффективной, существенно ограничивая контакт организма с внешней средой. Одежда человека примерно вдвое уменьшает потери тепла по сравнению с теплоотдачей обнаженного тела, одежда «арктического типа» может уменьшать отдачу тепла в 5—6 раз.

Зона температурного комфорта человека зависит от характера внешней среды, определяемого ее видом, температурой, влажностью (если этой средой является воздух), скоростью движения, наличием предметов с иной температурой по сравнению с температурой тела. В определенных условиях развивается состояние температурного комфорта, при этом активность механизмов терморегуляции оказывается минимальной. Зона комфорта (термонейтральная зона) при влажности воздуха около 50 % и равенстве температур воздуха и стен помещения для легко одетого человека, находящегося в положении сидя, соответствует температуре 25—26 °С. Для обнаженного человека температура комфорта в этих условиях смещается к 28 °С.








Дата добавления: 2016-02-20; просмотров: 2084;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.