Этапы производства кристаллов микросхем и фотолитография

Интегральные микросхемы делают на поверхности монокристаллического кремния (Кремний (Si) используется потому, что он является наиболее подходящим для этих целей полупроводником. В свою очередь, полупроводники — это класс материалов, чья электрическая проводимость находится посреди между проводимостью проводников (главным образом, металлов) и изоляторов (диэлектриков). Кремний также может выступать как в качестве диэлектрика, так и в качестве проводника — в зависимости от количества и типа присутствующих в нем примесей других химических элементов. И эта особенность широко используется при производстве микросхем. Впрочем, в редких случаях вместо кремния применяют и другие материалы. В частности, Intel умеет внедрять в свой 90-нм техпроцесс биполярные транзисторы с гетеропереходами (HBT) на кремний-германии (SiGe)) путем последовательного создания различных слоев на тонкой (меньше миллиметра) круглой (диаметром до 30 см) кремниевой пластине, именуемой подложкой [Тонкие пластины нарезаются из тяжеленной длинной цилиндрической болванки монокристаллического кремния, которая выращивается специальным прецизионным способом. Затем пластины полируются до зеркального блеска механическими и химическими методами. «Рабочая» поверхность (то есть та, на которой далее создается микросхема) пластины должна быть гладкой и совершенной на атомарном уровне и иметь весьма точную кристаллографическою ориентацию (подобно различным граням бриллианта при огранке, но еще более совершенной)]. Слои формируются при помощи различных процессов с использованием химических реактивов, газов и света. Производство современных микропроцессоров является сложным процессом, состоящим из трехсот с лишним шагов — более двадцати слоев «витиевато» соединены между собой, дабы сформировать схему микропроцессора с трехмерной структурой. Точное число слоев на подложке (вафле) зависит от дизайн-проекта конкретного процессора. Сотни идентичных микропроцессоров создаются на одной кремниевой подложке и на финальной стадии разрезаются на отдельные прямоугольные кристаллы — чипы.

Процессы формирования различных слоев и рисунков элементов микросхемы на подложке достаточно хитроумны (фактически это целая область науки), однако в их основе лежит одна простая идея: поскольку характерные размеры создаваемого рисунка настолько малы (Например, ячейка кэш-памяти процессора на 90-нм ядре Prescott в сто раз меньше красной кровяной клетки (эритроцита), а один ее транзистор — величиной с вирус гриппа), что осаждать те или иные материалы в нужных местах просто невозможно, поступают проще — материал осаждают сразу на всю поверхность подложки, а затем его аккуратно удаляют из тех мест, где он не нужен. Для этого служит процесс фотолитографии.

Что такое «чистая комната» и почему они используются на полупроводниковых фабриках?

Кристаллы микросхем должны производиться в условиях контролируемого и очень чистого воздуха. Поскольку функциональные элементы (транзисторы, проводники) на микрочипах очень малы, любая чужеродная частица (пыль, дым или чешуйки кожи), попавшая на пластину с будущими микросхемами на промежуточных стадиях ее производства, способна вывести из строя целый кристалл. «Чистые комнаты» классифицируются по размеру и количеству микрочастиц, присутствующих в единице объема (кубическом футе, примерно равном одной тридцатой части кубометра) воздуха. Например, комнаты класса 1, используемые в современном производстве, примерно в тысячу раз чище, чем хирургическая операционная. «Чистая комната» управляет чистотой воздуха путем фильтрации поступающего воздуха, удалением грязи с установок, ламинарным перемещением воздуха от потолка к полу (примерно за шесть секунд), регулировкой влажности и температуры. Люди в «чистых комнатах» ходят в специальных скафандрах, закрывающих, в том числе, весь волосяной покров (а в ряде случаев — даже с собственной системой дыхания). Для устранения вибраций чистые комнаты располагаются на собственном виброзащитном фундаменте.

Фотолитография является незыблемой основой производства микросхем, и в обозримом будущем ей вряд ли найдется достойная замена. Поэтому имеет смысл рассмотреть ее подробнее.

Например, нам нужно создать рисунок в слое какого-то материала — диоксида кремния или металла (это наиболее распространенные в современном производстве операции). Прежде всего, на подложке тем или иным способом создается тонкий (обычно тоньше одного микрона) и сплошной, без дефектов, слой нужного материала. Далее на нем проводится фотолитография. Для этого сперва на поверхность пластины наносится тонкий слой светочувствительного материала, называемого фоторезистом (Фоторезист наносится из жидкой фазы, равномерно распределяется по поверхности пластины вращением в центрифуге и сушится до затвердевания). Затем пластина с фоторезистом помещается в прецизионную установку, где нужные участки поверхности облучаются ультрафиолетом сквозь прозрачные отверстия в фотомаске (ее еще называют фотошаблоном). Маска содержит соответствующий (наносимый на поверхность пластины) рисунок, который разрабатывается для каждого слоя в процессе проектирования микросхемы. Под действием ультрафиолета облученные участки фоторезиста меняют свои свойства так, что становится возможным их селективно удалить в определенных химических реактивах (Существует негативный и позитивный фоторезист. Один при облучении «крепчает», поэтому удаляют его необлученные участки, а другой, наоборот, теряет химическую стойкость, поэтому удаляются его облученные участки. Соответственно, различают позитивную и негативную фотолитографию). После снятия фоторезиста остаются открытыми только те области поверхности пластины, над которыми требуется совершить нужную операцию — например, убрать слой диэлектрика или металла. Они успешно удаляются (эта процедура называется травлением — химическим или плазмохимическим), после чего остатки фоторезиста можно окончательно убрать с поверхности пластины, оголив сформированный в слое нужного материала рисунок для дальнейших действий.Фотолитография завершена.

При производстве современных микропроцессоров приходится совершать операции фотолитографии до 20–25 раз — каждый раз над новым слоем. В общей сложности это занимает несколько недель! В одних случаях это слои изолирующих материалов, служащих подзатворным диэлектриком транзисторов или пассивирующими (изолирующими) прослойками между транзисторами и проводниками. В других — это формирование проводящих поликремневых затворов транзисторов и соединяющих транзисторы металлических проводников (В целях упрощения часть операций иногда совмещают — например, так называемые самосовмещенные затворы изготавливаются на базе одной и той же фотолитографии одновременным формированием рисунка подзатворного диэлектрика и тонкого поликремниевого затвора). В третьих — это формирование селективно легированных областей (главным образом — стоков и истоков транзисторов), причем легирование участков поверхности монокристаллической кремниевой пластины ионизированными атомами различных химических элементов (с целью создания в кремнии полупроводниковых областей n- или p-типа) производится не через окна в фоторезисте (он слишком нестоек для этого), а сквозь рисунок в достаточно толстом слое нанесенного диэлектрика (например, того же оксида кремния). После чего диэлектрик удаляется вместе с фоторезистом.

Иногда применяется и такой интересный метод, как взрывная фотолитография. То есть сперва формируется рисунок (вытравливаются окна в фоторезисте или временном слое диэлектрика), затем на поверхность пластины наносится сплошной слой нового материала (например, металла), и, наконец, пластина помещается в реактив, удаляющий остатки фоторезиста или временный диэлектрик. В результате удаляемый слой как бы «взрывается» изнутри, унося с собой лежащие на нем куски нанесенного последним металла, а в предварительно «открытых» участках (окнах) металл остался и сформировал нужный нам функциональный рисунок (проводников или затворов). И это только верхушка айсберга, называемого микроэлектронной технологией, в основе которой лежит принцип фотолитографии.

Межсоединения — то есть электрические соединения между транзисторами в микросхемах (объединяющие несколько транзисторов в отдельные функциональные ячейки, а ячейки — в сложные блоки) — создаются при помощи нескольких металлических слоев, подобно тому, как на сложных печатных платах (материнских платах, видеокартах, модулях памяти и пр.) отдельные микросхемы, транзисторы, резисторы и конденсаторы объединяются в законченные схемы. Только здесь это происходит на микромасштабах. В качестве металла для межсоединений в современных микропроцессорах, изготавливаемых по 130-нм и 90-нм технологиям, как правило, выступает медь (Хотя раньше большинство производителей использовало алюминий. А в специальных дорогих схемах для этих целей может использоваться и золото. Серебро тут не прижилось в силу некоторых негативных физических эффектов — например, электромиграции в кремний). Новейшие микропроцессоры насчитывают от семи до десяти слоев межсоединений (Напомню, что, например, материнские платы обычно имеют четыре или шесть слоев металлизации), причем у разных производителей число слоев может разниться: для 0,13-микронного и 90-нм техпроцессов Intel Pentium 4 имеет семь или восемь слоев соответственно, тогда как AMD Athlon 64 — девять слоев в обоих случаях (см. рис. 3 в первой части), а процессоры IBM — еще больше (до одиннадцати слоев). И это не предел — в будущих более сложных чипах число слоев межсоединений наверняка возрастет. Для уменьшения паразитных связей между слоями металлизации нынче используется уже не традиционный диоксид кремния, а специальный материал (low-k) с более низкой диэлектрической проницаемостью (это снижает емкости между слоями).

Таким образом на поверхности кремниевой пластины создается сложная трехмерная структура толщиной в несколько микрон, которая, собственно, и является электронной схемой. Сверху схема покрывается толстым (микроны) слоем пассивирующего диэлектрика, защищающего тонкую структуру от внешних воздействий. В нем лишь открываются окна для больших, стороной в десятки микрон, квадратных металлических контактных площадок, через которые на схему подаются извне питающие напряжения и электрические сигналы. А снизу механической основой микросхемы служит кремниевая пластина толщиной в сотни микрон. Теоретически, такую схему можно было бы сделать очень тонкой (10–30 мкм) и при желании даже «свернуть в трубочку» без потери функциональности. И подобные работы уже некоторое время ведутся в отдельных направлениях, хотя традиционные кристаллы микросхем (чипы) по-прежнему остаются «несгибаемыми».

После завершения технологических процедур каждый из кристаллов на пластине тестируется (подробнее об этом — в следующей статье), а потом пластина разрезается на отдельные кристаллы (прямоугольные чипы) при помощи алмазной пилы (Перед разрезанием на кристаллы толщина пластины у современных микропроцессоров уменьшается примерно на треть при помощи механической полировки. Это позволяет помещать их в более компактные корпуса. Полировка обратной стороны преследует также цели удаления посторонних материалов с последующим формированием электрического и адгезионного контактов к подложке при корпусировке). Далее каждый чип упаковывается в свой корпус, что позволяет подключать его к другим приборам. Тип упаковки зависит от типа микросхемы и от того, как она будет использоваться. Напоследок все упакованные чипы тестируются еще раз (негодные отбраковываются, годные проходят специальные стресс-тесты при различных температурах и влажности, а также проверку на электростатический разряд), сортируются по характеристикам и соответствию тем или иным спецификациям и отгружаются заказчику.








Дата добавления: 2016-02-20; просмотров: 4948;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.