Термоанемометрический датчик
В основу датчика положен принцип компенсационного нагрева определенного элемента датчика, охлаждаемого воздушным потоком. Нагрев называется компенсационным, так как элемент датчика нагревается только до определенной температуры относительно проходящего воздуха. Энергия тратится на восстановление температуры элемента, охлаждаемого воздушным потоком. Чем больше проходящий воздушный поток, тем сильнее он охлаждает термоэлемент датчика и тем больше требуется энергии на компенсационный нагрев.
Электронная часть датчика измеряет как раз потребляемую на нагрев энергию. При этом соблюдается условие поддержания постоянной относительной температуры термоэлемента датчика.
Массовый расход воздуха определяется путем измерения электрической мощности, необходимой для поддержания заданного превышения температуры нагреваемых элементов над температурой окружающего воздуха.
Конструктивно датчик представляет собой цилиндр с натянутой внутри платиновой нитью и помещенным в центре терморезистором. Нить играет роль одновременно и нагревателя, и датчика собственной температуры. Диаметр нити около . Терморезистор служит для измерения температуры проходящего воздуха. Эта температура является базовой величиной для нагрева нити.
Платиновая нить имеет прямую зависимость сопротивления от температуры (положительный температурный коэффициент). При остывании нить теряет сопротивление, соответственно падение напряжения на ней уменьшается.
Рисунок 7.6 - Конструкция датчика массового расхода воздуха.
На рис. 7.6 показан общий вид конструкции датчика массового расхода воздуха с термоэлементом на основе платиновой нити. Нить натянута внутри корпуса чувствительного элемента и лежит целиком в плоскости, перпендикулярной оси корпуса. Оба конца нити соединены с электрическими контактами в верхней части сборки чувствительного элемента.
Платиновая нить и терморезистор соединены в одну аналоговую схему управления, построенную на основе операционного усилителя. Электрически схема нагревателя и терморезистора датчика представляет собой мост Уилсона. Причем терморезистор и нагреватель (нить) включены в разные плечи моста. Падение сопротивления нити приводит к разбалансированию моста и появлению напряжения между контрольными точками. Это напряжение подается на усилитель, питающий схему, что приводит к повышению напряжения питания и протекающего тока и позволяет восстанавливать температуру нити до требуемого уровня. Выходной сигнал снимается с прецизионного резистора . Изменение тока, протекающего через нить, приводит к изменению напряжения на резисторе.
Рисунок 7.7- Электрическая схема датчика массового расхода воздуха.
На рис. 7.7 приведена электрическая схема датчика расхода воздуха. Схема состоит из 2-х основных частей: электрического резисторного моста и операционного усилителя. Левое плечо моста включает терморезистор ( ) и делитель ( и ), предназначенный для настройки баланса моста. Правое плечо включает саму нить ( ) и выходной резистор ( ).
Датчик выбирается так, чтобы в зоне рабочих расходов воздуха его характеристика была близка к линейной. Для самоочищения платиновой нити при выключении зажигания она кратковременно нагревается примерно до .
Дата добавления: 2016-02-04; просмотров: 2501;