Кодирование повторов
8.2.4.1 Кодирование последовательностей повторяющихся символов, метод RLE предусматривает замену последовательности повторяющихся символов на строку, содержащую этот символ, и число, соответствующее количеству его повторений. В качестве примера рассмотрим сжатие последовательности символов ACCOUNTbbbbbbbMOUNT, в которой b означает символ пробела. Если для обозначения выполненного сжатия символов пробела модем использует специальный символ Sс, то между модемами будет передана последовательность символов ACCONTSc7MOUNT. Символ Sс в этой последовательности означает, что было произведено сжатие символов пробела, а число 7 указывает, сколько именно символов пробела заменено символом Sс. С помощью этой информации принимающий модем может восстановить данные.
Однако в последовательности передаваемых символов может встретиться пара символов S и с, которые являются частью данных, а не специальным символом Sс, обозначающим сжатие. Чтобы принимающий модем воспринимал эти символы как данные, передающий модем при обнаружении пары символов Sс добавляет в передаваемую последовательность еще одну такую пару. Таким образом, если модем принял от терминала поток данных XYZScABC, то по телефонному каналу он передаст следующую последовательность символов: XYZScScABC. На принимающем модеме при обнаружении первого специального символа Sc проверяется следующий символ. Если им окажется не число, а еще один такой символ, модем отбросит второй символ и восстановит первоначальный поток данных.
Сжатие позволяет увеличить пропускную способность систем передачи данных, но если один или более символов будут переданы с ошибкой, это может привести к очень печальным последствиям при восстановлении потока данных. В качестве примера покажем, к чему может привести ошибка при передаче последовательности символов AAAAAAAA. Предположим, что используется алгоритм сжатия RLE, в котором символ, означающий сжатие, представлен последовательностью битов 11111111, а символ A – последовательностью 01000001 (табл. 8.6.).
На рис. 8.6 демонстрируется, к чему может привести ошибка всего лишь в одном символе переданной последовательности битов.
Как видно из рассмотренного примера, последствия ошибки в символе при передаче сжатых данных намного серьезнее, чем при наличии такой же ошибки в случае обычной передачи. Поэтому во всех модемах, выполняющих сжатие данных, имеются встроенные программы, осуществляющие кодирование и декодирование сжатой последовательности в одном из корректирующих кодов.
– Последовательность одинаковых символов: АААААААА
– Последовательность символов после сжатия: Sc 8 A
– Двоичное представление передаваемых данных: 11111111 00001000 01000001
– Ошибка в символе: 11111111 00001000 01000011
– Принятая последовательность символов: Sc 8 C
– Распакованная последовательность символов: СССССССС
Рис. 8.6. Последствие ошибки в одном бите переданной сжатой строки
8.2.4.2. Кодирование длин повторений, может быть достаточно эффективным при сжатии двоичных данных, например, черно-белых факсимильных изображений, черно-белых изображений, содержащих множество прямых линий и однородных участков, схем и т.п. Кодирование длин повторений является одним из элементов известного алгоритма сжатия изображений JPEG.
Идея сжатия данных на основе кодирования длин повторений состоит в том, что вместо кодирования собственно данных подвергаются кодированию числа, соответствующие длинам участков, на которых данные сохраняют неизменное значение.
Предположим, что нужно закодировать двоичное (двухцветное) изображение размером 8 х 8 элементов, приведенное на рис. 8.2.
Рис.8.2. Двухцветное изображение 8 х 8 элементов
Просканируем это изображение по строкам (двум цветам на изображении будут соответствовать 0 и 1), в результате получим двоичный вектор данных
X=(0111000011110000000100000001000000010000000111100011110111101111)
длиной 64 бита (скорость исходного кода составляет 1 бит на элемент изображения).
Выделим в векторе X участки, на которых данные сохраняют неизменное значение, и определим их длины. Результирующая последовательность длин участков - положительных целых чисел, соответствующих исходному вектору данных X, - будет иметь вид r = (1, 3, 4, 4, 7, 1, 7, 1, 7, 1, 7, 4, 3, 4, 1, 4, 1, 4). Теперь эту последовательность, в которой заметна определенная повторяемость (единиц и четверок гораздо больше, чем других символов), можно закодировать каким-либо статистическим кодом, например, кодом Хаффмена без памяти, имеющим таблицу кодированием (табл. 8.6.)
Таблица 8.6
Таблица кодирования длин участков
Кодер | |
Длина участка | Кодовое слово |
Для того, чтобы указать, что кодируемая последовательность начинается с нуля, добавим в начале кодового слова префиксный символ 0. В результате получим кодовое слово B (r)= (01 00011010110101101011001110100100 ) длиной в 34 бита, то есть результирующая скорость кода Rсоставит 34/64, или немногим более 0,5 бита на элемент изображения. При сжатии изображений большего размера и содержащих множество повторяющихся элементов эффективность сжатия может оказаться существенно более высокой.
Ниже приведен другой пример использования кодирования длин повторений, когда в цифровых данных встречаются участки с большим количеством нулевых значений. Всякий раз, когда в потоке данных встречается “ноль”, он кодируется двумя числами. Первое - 0, являющееся флагом начала кодирования длины потока нулей, и второе – количество нулей в очередной группе. Если среднее число нулей в группе больше двух, будет иметь место сжатие. С другой стороны, большое число отдельных нулей может привести даже к увеличению размера кодируемого файла:
Еще одним простым и широко используемым для сжатия изображений и звуковых сигналов методом неразрушающего кодирования является метод дифференциального кодирования.
Дата добавления: 2016-02-04; просмотров: 2330;