Транзисторе при работе в активном режиме.
Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рисунок 3.4), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.
В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение UЭБ. Поэтому прямой ток перехода
, (3.1)
где Iэ р, Iэ n - инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а Iэ рек - составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера. Относительный вклад этой составляющей в ток перехода Iэ в (3.1) тем заметнее, чем меньше инжекционные составляющие Iэр и Iэn, определяющие прямой ток в случае идеализированного р-n перехода. Если вклад Iэ рек незначителен, то вместо (3.1) можно записать
. (3.2)
Полезным в сумме токов выражения (3.1) является только ток Iэ р, так как он будет участвовать в создании тока коллекторного перехода. “Вредные” составляющие тока эмиттера Iэ n и Iэ рек протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты Iэ n, Iэ рек должны быть уменьшены.
Эффективность работы эмиттерного перехода учитывается коэффициентом инжекции эмиттера
, (3.3)
который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током Iэ рек
. (3.4)
Коэффициент инжекции gЭ "тем выше (ближе к единице), чем меньше отношение Iэ n/ Iэ р. Величина Iэ n/ Iэ р << 1, если концентрация акцепторов в эмиттерной области p-n-p транзистора NАЭ на несколько порядков выше концентрации доноров NДБ в базе (NАЭ >> NДБ). Это условие обычно и выполняется в транзисторах.
Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭр? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок - неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок IБ рек, так что ток подходящих к коллекторному переходу дырок
. (3.5)
Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса:
. (3.6)
Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение cБ тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами - основными носителями базовой области. Ток IБ рек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБ рек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭ n.
Чтобы уменьшить потери на рекомбинацию, т.е. увеличить cБ, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров Nд Б. Это совпадает с требованием NАЭ/NДБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы WБ и диффузионной длины дырок в базовой области Lp Б. Доказано, что имеется приближенное соотношение
. (3.7)
Например, при WБ/Lp Б = 0,1 cБ = 0,995, что очень мало отличается от предельного значения, равного единице.
Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей, то ток за коллекторным переходом с учетом (3.5)
(3.8)
С учетом (3.6) и (3.3) получим
, (3.9)
где
. (3.10)
Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называет статическим коэффициентом передачи тока эмиттера.
Ток коллектора имеет еще составляющую IКБО, которая протекает в цепи коллектор - база при IЭ = 0 (холостой ход, “обрыв” цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном p-n переходе (диоде).
Таким образом, полный ток коллектора с учетом (3.8) и (3.10)
. (3.11)
Из (3.11) получим обычно используемое выражение для статического коэффициента передачи тока:
, (3.12)
числитель которого (IК - IКБО) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IКр. Обычно рабочие токи коллектора IК значительно больше IКБО, поэтому
. (3.13)
С помощью рисунка 3.4 можно представить ток базы через компоненты:
. (3.14)
По первому закону Кирхгофа для общей точки
. (3.15)
Как следует из предыдущего рассмотрения, IК и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы
. (3.16)
Используя (3.16) и (3.11), получаем связь тока базы с током эмиттера
. (3.17)
Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ = -IКБО, т. е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. При значении I*Э = IКБО /(1-a) ток IБ = 0, а при дальнейшем увеличении IЭ (IЭ>I*Э) ток базы оказывается положительным.
Подобно (3.11) можно установить связь IК с IБ. Используя (3.11) и (3.15), получаем
, (3.18)
где
(3.19)
- статический коэффициент передачи тока базы. Так как значение a обычно близко к единице, то b может быть очень большим (b>>1). Например, при a = 0,99 b = 99. Из (3.18) можно получить соотношение
. (3.20)
Очевидно, что коэффициент b есть отношение управляемой (изменяемой) части коллекторного тока (IК - IКБО) к управляемой части базового тока (IБ + IКБО).
Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ = 0. Введя обозначение
, (3.21)
можно вместо (3.18) записать
. (3.22)
Отсюда очевиден смысл введенного обозначения IКЭО: это значение тока коллектора при нулевом токе базы (IБ = 0) или при “обрыве” базы. При IБ = 0
IК = IЭ, поэтому ток IКЭО проходит через все области транзистора и является “сквозным” током, что и отражается индексами “К” и “Э” (индекс “О” указывает на условие IБ = 0).
Дата добавления: 2016-02-04; просмотров: 672;