КОНТРОЛЬ ПРОНИКАЮЩИМИ ВЕЩЕСТВАМИ

 

Основан на проникновении пробных веществ в полость дефектов контролируемого объекта. Методы делятся на капиллярный и течеискания.

Капиллярный метод основан на капиллярном проникновении индикаторной жидкости (керосин, скипидар) в полость сквозных и поверхностных несплошностей материала объектов контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.

Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам. Капиллярные методы дефектоскопии широко и успешно применяются во многих отраслях машиностроения, строительства, на транспорте.

Несомненным достоинством капиллярного метода является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.). В качестве индикаторных жидкостей применяют органические люминофоры - вещества, дающие яркое собственное свечение под действием ультрафиолетовых лучей, а также различные красители. Поверхностные дефекты выявляют с помощью средств, позволяющих извлекать индикаторные вещества из полости дефектов и обнаруживать их присутствие на поверхности контролируемого изделия.

Капилляр, выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностъю, а соединяющий противоположные стенки объекта контроля, - сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины «поверхностный дефект» и «сквозной дефект». Изображение, образованное пенетрантом в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком, или индикикацией. Применительно к несплошности типа единичной трещины вместо термина «индикация» допускается применение термина «индикаторный след». Глубина несплошности - размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности - продольный размер несплошности на поверхности объекта. Раскрытие несплошности - поперечный размер несплошности у ее выхода на поверхность объекта контроля. Необходимым условием надежного выявления капиллярным методом дефектов, имеющих выход на поверхность объекта, является относительная их незагрязнённость посторонними веществами, а также глубина распространения, значительно превышающая ширину их раскрытия (минимум 10/1). Различают максимальную, минимальную и среднюю глубину, длину и раскрытие несплошности. Если не требуется заранее оговаривать, какое из указанных значений размеров имеется в виду, то для исключения недоразумений следует принять термин «преимущественный размер». Для несплошностей типа округлых пор раскрытие равно диаметру несплошности на поверхности объекта. Чувствительность дефектоскопических материалов, качество промежуточной очистки и контроль всего капиллярного процесса определяются на контрольных образцах, т.е. на металлических определенной шероховатости с нанесенными на них нормированными искусственными трещинами (дефектами). Основные моменты в процессе капиллярного контроля легко представить с помощью рисунка 13, где схематически изображена деталь 1 с дефектом 2, имеющим выход на поверхность П. Чтобы выявить дефект (трещину), на поверхность П детали наносится индикаторная жидкость (пенетрант) 3, которая заполняет трещину под действием капиллярных сил (рис. 13, б).

a - дефект в изделии; б - нанесение пенетранта;

в - удаление пенетранта с поверхности П;

г - нанесение проявителя и проявление;

1 - изделие; 2 - дефект; 3 - пенетрант;

4 - проявитель; 5 - след дефекта

 

Рис.13 - Последовательность операций при капиллярной дефектоскопии

 

Пенетрантом (пенетрант от английского penetrate - проникать) называют капиллярный дефектоскопический материал, обладающий способностью проникать в несплошности объекта контроля и индицировать эти несплошности. Пенетранты содержат красящие вещества (цветной метод) или люминесцирующие добавки (люминесцентный метод), или их комбинацию. Добавки позволяют отличать пропитанную этими веществами область слоя проявителя над трещиной от основного (чаще всего белого) сплошного без дефектов материала объекта (фон).

Следующая операция - удаление пенетранта с поверхности изделия П. Если пенетрант останется на бездефектной поверхности, он даст ложную информацию, как будто на поверхности есть трещина или другой дефект. Но главное, чтобы пенетрант 3 остался в трещине 2. Затем на поверхность П, с которой удален излишек пенетранта, наносится проявитель 4 (рис. 13, г). Капиллярные силы проявителя 4 извлекают пенетрант 3 из трещины 2 в слой проявителя 4, который окрашивает часть белого проявителя над дефектом (след дефекта) 5, что и позволяет обнаруживать дефект 2 под слоем проявителя 4.

Проявителем называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Таким образом, роль проявителя в капиллярном контроле заключается, с одной стороны, в том, чтобы он извлекал пенетрант из дефектов за счет капиллярных сил, с другой стороны, - проявитель должен создать контрастный фон на поверхности контролируемого объекта, чтобы уверенно выявлять окрашенные или люминесцирующие индикаторные следы дефектов. При правильной технологии проявления ширина следа в 10 - 20 и более раз может превосходить ширину дефекта, а яркостный контраст возрастает на 30 ... 50 %. Этот эффект увеличения позволяет опытным специалистам даже невооруженным глазом выявлять очень маленькие трещины.

Метод используют для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности (для дефектов типа трещин) и ориентации по поверхности. Данный вид контроля позволяет диагностировать объекты любых размеров и форм, изготовленные из черных и цветных металлов и сплавов, пластмасс, стекла, керамики, а также других твердых неферромагнитных материалов.

Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой чувствительности другим методом.

Основные капиллярные методы контроля подразделяют в зависимости от типа проникающего вещества на следующие:

1 Метод проникающих растворов – основан на использовании в качестве проникающего вещества жидкого индикаторного раствора.

2 Метод фильтрующихся суспензий – основан на использовании в качестве жидкого проникающего вещества индикаторной суспензии, которая образует индикаторный рисунок из отфильтрованных частиц дисперсной фазы.

Комбинированные методыкапиллярного неразрушающего контролясочетают два или болееразличных по физической сущности методов неразрушающего контроля, один из которого обязательно жидкостный.

Капиллярный контроль - один из наиболее широко используемых в промышленности методов неразрушающего контроля. Его применяют для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных дефектов в объектах любых размеров и форм, изготовленных из металлических или других любых твердых непористых материалов. Этот метод позволяет выявлять дефекты производственно-технологического и эксплуатационного происхождения, любой геометрии размером около 1 мкм и более.

Метод течеискания используют для выявления только сквозных дефектов.

Современная техника течеискания – это область науки и техники, обеспечивающая создание и применение комплекса аппаратуры и методов контроля качества герметизации разнородных систем и изделий. В общем случае нарушение герметичности определяется наличием в оболочке сквозных капиллярных каналов (течей) или проницаемостью основного материала с ненарушенной структурой.

Течь – канал или пористый участок изделия или его элементов, нарушающий их герметичность.

Метод течеискания имеет ограничения в применении по толщине стенок, она не должна превышать 62,5 мм. Скорость просачивания сквозь деталь зависит от формы капиллярного прохода. Узкий капилляр обеспечивает наилучшее прохождение. Пористость в детали замедляет движение пенетранта. Если толщина стенки близка к максимуму и влияние капиллярности оценивается как незначительное, время выдержки должно быть увеличено. Период в 30 мин. является достаточным. Может оказаться полезным повторное нанесение пенетранта в течение этого периода.

Методы течеискания классифицируют на:

- масс-спектрометрический;

- галогенный;

- манометрический;

- вакуумметрический;

- катарометрический;

- электронозахватный;

- акустический;

- химический;

- пузырьковый;

- люминесцентно-цветной;

- яркостный (ахроматический).

При применении метода течеискания пенетрант наносится на одну поверхность исследуемого участка тонкостенного металла, а проявитель напыляется на противоположную сторону. Пенетрант проходит сквозь полости дефектов на противоположную сторону, что можно наблюдать в виде красного следа на фоне контрастного белого проявителя.

Требования к порогу чувствительности испытаний изделий устанавливают исходя из требований к их герметичности. Абсолютная герметичность недостижима и неконтролируема. Герметичными принято считать конструкции, если перетекание через них проникающих веществ достаточно мало для того чтобы, его влиянием можно было пренебречь при эксплуатации и хранении.

Чем выше избирательная способность метода течеискания, трем резче реакция на пробное вещество, тем больше чувствительность. Острота реакции зависит и от свойств пробных веществ. Она тем резче, чем сильнее выбранное вещество отличается от воздуха по электрическим, тепловым и другим свойствам, определяющим избирательную реакцию.

Наивысшей чувствительностью обладают промышленные масс-спектрометрические течеискатели, реагирующие только на пробное вещество, вне зависимости от присутствия сторонних паров и газов. Практически не чувствительны к присутствию воздуха и многих других веществ галогенные течеискатели, но пары растворителей и других галогеносодержащих соединений могут вызывать их фоновые сигналы. С увеличением фонового сигнала и его нестабильности, естественно возрастает наименьший достоверно регистрируемый сигнал от течи и порог чувствительности. Сигнал манометров определяется всей совокупностью присутствующих веществ, и возможности регистрации утечек манометрическим методом при общем высоком уровне давления ограничены. Зато при сверхвысоком вакууме этим методом могут быть иногда зафиксированы предельно малые течи, лежащие за порогом чувствительности масс-спектрометрического метода. Следует иметь в виду, что порог чувствительности не является абсолютной характеристикой метода, но зависит от способа его реализации, схемы и режима испытаний, характеристик испытуемого объекта.









Дата добавления: 2016-01-30; просмотров: 2221;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.