ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИКИ И ОБЩЕГО НАЗНАЧЕНИЯ 2 страница

На заводе «Электросила» впервые в мировой практике было предложено и освоено водородное охлаждение роторов с заборниками и дефлекторами, а также водяное охлаждение обмотки статора. Все работы проходили вначале под руководством главного инженера завода Д.В. Ефремова, главных конструкторов Е.Г. Комара и Н.П. Иванова, а затем главного инженера Ю.В. Арошидзе, главного конструктора турбогенераторов Г.М. Хуторецкого и руководителя научно‑технических и опытно‑конструкторских работ завода Л.В. Куриловича. Водород является лучшим хладагентом по сравнению с воздухом. Использование водорода началось с турбогенератора мощностью 100 МВт и частотой вращения 3000 об/мин, который был изготовлен в 1946 г. Он имел косвенное водородное охлаждение для роторной и статорной обмоток. Вполне естественно, что система охлаждения сердечника статора была в принципе такой же, как и при воздушном охлаждении. Потребовался переход от косвенного охлаждения обмоток к непосредственному. В катушках ротора выполнялись диагональные каналы, подача водорода в которые осуществлялась заборниками, а отвод – дефлекторами. Заборники и дефлекторы – клинья для крепления обмотки с профильными отверстиями для прохождения газа. При увеличении мощностей требовалось повышение давления водорода. Таким образом, газ непосредственно соприкасался с медью ротора. Стержни обмотки статора выполнялись из полых медных проводников, между которыми укладывались сплошные проводники. Вода, протекая по полым проводникам, обеспечивала непосредственное охлаждение статорной обмотки.

Для радикального снижения вибраций корпусов машин применялась эластичная связь между сердечником и корпусом. Это достигалось с помощью продольных прорезей в ребрах прямоугольного сечения, на которых собирается сердечник.

Особые трудности возникли при создании турбогенератора мощностью 800 МВт. В связи с очень большими электродинамическими силами и условиями работы, близкими к резонансным, оказались неприемлемыми обычные способы крепления лобовых частей обмоток. Монолитное крепление было достигнуто с помощью новых крепящих материалов: мягкого материала, формирующегося при комнатной температуре, т.е. в процессе изготовления машины, и твердеющего при повышенной температуре, а также самоусаживающихся лавсановых шнуров.

Под руководством А.Б. Шапиро и И.А. Кади‑Оглы были разработаны оригинальные турбогенераторы с еще более интенсивным водяным охлаждением обмоток ротора и статора, сердечника статора и некоторых конструктивных элементов. Первый турбогенератор с полностью водяным охлаждением мощностью 63 МВт и частотой вращения 3000 об/мин был введен в эксплуатацию в 1969 г. В дальнейшем были сделаны еще три таких машины. В 1980 г. был включен турбогенератор мощностью 800 МВт и частотой вращения 3000 об/мин. В дальнейшем начали работать еще четыре машины. В их конструкции подача и слив воды осуществлялись помимо вала. Вода из неподвижной трубы поступает в зону фасонного кольца на роторе и удерживается в нем центробежными силами. Далее вода идет в нижние выводы катушек из прямоугольных проводов с отверстиями и под действием центробежных сил попадает в верхние выводы и сливное кольцо. Такая система называется самонапорной. Следует заметить, что во всем мире подача воды в обмотку ротора и ее отвод происходят через отверстия в валу, что делает конструкцию очень сложной и менее надежной. Преимуществом этого класса турбогенераторов является исключение водорода и заполнение корпуса воздухом при атмосферном давлении.

На заводе «Электротяжмаш» (г. Харьков) разработки и изготовление турбогенераторов мощностью 200, 300 и 500 МВт и частотой вращения 3000 об/мин проводились главным конструктором завода Л.Я. Станиславским, заместителем главного конструктора B.C. Кильдишевым, главным инженером Н.Ф. Озерным и начальником производства И.Г. Гринченко. Методы расчета турбогенераторов, особенно торцевой зоны, были развиты заведующим отделом Института электродинамики Академии наук УССР И.М. Постниковым.

В машине мощностью 200 МВт ротор с водородным, а статор – с водяным охлаждением. В турбогенераторе мощностью 300 МВт используется непосредственное водородное охлаждение как для роторной, так и для статорной обмоток. В роторе используется аксиально‑радиальная вентиляция. В стержне статорной обмотки прокладываются тонкостенные стальные трубки, по которым проходит газ. В турбогенераторах мощностью 500 МВт обмотки статора и ротора образованы из полых и сплошных проводников. Вода подается в обмотку ротора и отводится из нее через отверстия в валопроводе.

На заводе «Сибэлектротяжмаш» (г. Новосибирск) был освоен турбогенератор мощностью 500 МВт и частотой вращения 3000 об/мин с масляным охлаждением обмотки статора и сердечника и водяным охлаждением обмотки ротора. Внутрь расточки статора вводится и герметично закрепляется в щитах цилиндр из стеклоленты. Масло с одной стороны статора проходит в другую через каналы в стержнях обмотки и через аксиальные отверстия в сердечнике. Вода к обмотке ротора поступает через валопровод. Напряжение статорной обмотки равно 35 кВ, что существенно облегчает токоподводы от генератора к повышающему трансформатору.

В организацию производства, методы расчета, технологические процессы и конструкции рассмотренных уникальных турбогенераторов решающий вклад внесли П.Е. Базунов, К.Ф. Потехин и К.Н. Масленников.

Существенные работы были проведены на Лысьвенском турбогенераторном заводе (г. Лысьва, Пермской обл.) в области турбогенераторов средней мощности. Особенно высокую оценку получили синхронные двухполюсные двигатели мощностью 630–12 500 кВт, напряжением 6 и 10 кВ. Они применяются в приводах нефтяных насосов магистральных нефтепроводов, нагнетателей магистральных газопроводов, воздуходувок доменных печей, газовых компрессоров химических производств и др. Их освоение было закончено в 1980 г.

По сравнению с предыдущей серией масса двигателей новой серии снижена в 1,5–2 раза, повышен КПД на 0,5–2%, снижена трудоемкость изготовления в 1,5 раза и увеличен объем выпуска в 3 раза без увеличения производственных площадей. По своему техническому уровню двигатели превысили показатели лучших мировых образцов. Наиболее существенный вклад в расчеты и конструкции двигателей внесли Э.Ю. Флейман и В.П. Глазков, а в системы возбуждения – С.И. Логинов.

Подводя итоги исторического развития турбогенераторов в послевоенные годы, следует отметить успехи научно‑технической деятельности коллективов нескольких заводов, в результате чего были созданы и освоены в производстве турбогенераторы различных конструкций. Однако наличие различных конструкций усложняет проектирование и строительство электростанций, монтажные, наладочные и ремонтные работы, а также обеспечение запасными частями. Поэтому в рамках одной страны становится желательным выпуск машин единой конструкции. В зарубежной практике (Франция, Англия, Швеция, Швейцария) эта проблема решается путем объединения электротехнических фирм и специализации производства. В нашей стране с целью создания единой унифицированной серии турбогенераторов для всех заводов была разработана и выполнена обстоятельная программа исследований и разработок машин единой серии (научный руководитель И.А. Глебов, зам. научного руководителя Я.Б. Данилевич, главный конструктор Г.М. Хуторецкий, главный технолог Ю.В. Петров). Требования к новой серии формулировались с участием специалистов стран‑членов Совета экономической взаимопомощи. В основу серии были положены турбогенераторы с водоводородным охлаждением производства объединения «Электросила», поскольку их число было наибольшим и имелся положительный опыт их эксплуатации во всем диапазоне мощностей от 63 до 800 МВт при частоте вращения 3000 об/мин. Освоение турбогенераторов единой унифицированной серии началось в 1990 г.

К наиболее крупным достижениям зарубежных фирм в области турбогенераторов относятся следующие. Фирма «Альстом‑атлантик» выпустила серию четырехполюсных турбогенераторов мощностью 1600 MB∙А для атомных электростанций; предельная мощность четырехполюсных турбогенераторов для атомных электростанций фирмы «Сименс» составляет около 1300 MB∙А. Фирма ABB освоила выпуск турбогенераторов мощностью 1500 MB∙А, 1800 об/мин, 60 Гц и турбогенераторов мощностью 1230 MB∙А, 3000 об/мин, 50 Гц. Американские и японские фирмы выпускают турбогенераторы наибольшей мощностью около 1100 MB∙А. Все фирмы, за исключением «Сименс», используют водородно‑водяное охлаждение. Фирма «Сименс» применяет водяное охлаждение для обмоток не только статоров, но и роторов.

 

Рис. 6.3. Общий вид ударного турбогенератора (инерционного накопителя энергии)

1,2,3 – подшипник, статор и вал ротора турбогенератора 200 МВт соответственно; 4,5,6 – подшипник, вал, кожух маховика соответственно; 7 – асинхронный двигатель; 8 – фундаментные плиты

 

Необходимо обратить внимание на все увеличивающийся выпуск турбогенераторов средних мощностей – до 250 МВт для тепловых электростанций с комбинированным циклом (две газовые турбины и одна паровая).

В последние годы началось использование парогазовых установок. Поскольку предельная мощность газовых турбин в настоящее время составляет 150–200 МВт, то парогазовая система мощностью 450–600 МВт состоит из трех блоков: два с газовыми турбинами и один с паровой. Поскольку для таких блоков нужны турбогенераторы сравнительно небольших мощностей (150–200 МВт), для упрощения их конструкции вернулись к воздушному охлаждению. Первый турбогенератор мощностью 150 МВт и частотой вращения 3000 об/мин с воздушным охлаждением изготовлен для Северо‑западной ТЭЦ в 1996 г. в АО «Электросила».

К особому классу относятся ударные турбогенераторы кратковременного действия. Они применяются для испытания выключателей, для экспериментальных установок термоядерного синтеза на базе токамаков, крупных плазмотронов, установок ускорения масс и др. Для экспериментального токамака со сверхсильным полем были разработаны и выполнены четыре двухполюсных турбогенератора мощностью по 200 МВт (242 MB∙А). Такие турбогенераторы созданы впервые в мировой практике (рис. 6.3). В них применяется косвенное воздушное охлаждение. С целью снижения габаритов генераторы выполнены с повышенным насыщением магнитной цепи. На общем валу с генератором находится инерционный накопитель, сделанный на основе ротора турбогенератора мощностью 800 МВт. Запасенная энергия в генераторе равна 100, а в маховике – 800 МДж. Удельная энергоемкость ротора генератора составляет 5, а маховика – 10 Дж/г. Длительность импульса равна 5 с. Во время выдачи накопленной энергии частота вращения уменьшается до 70%. Таким образом, используется 50% энергии. Удельная стоимость накопленной энергии получается наименьшей по сравнению со стоимостью энергии других видов накопителей. Количество энергии может быть доведено до 2500 МДж за счет использования более прочной стали и увеличения диаметра маховика. Пуск установки осуществляется асинхронным двигателем с фазным ротором на валу агрегата или преобразователем частоты с питанием от сети. И.А. Глебовым, Э.Г. Кашарским и Ф.Г. Рутбергом разработаны методы расчета, выполнены технические проработки различных вариантов и их сопоставление, обоснование турбогенераторного исполнения в отличие от гидрогенераторного, применяемого в зарубежной практике [6.32]. Проект был выполнен Г.М. Хуторецким, а металлургические проблемы решены A.M. Шкатовой.

Следует заметить, что в начале 20‑х годов XX в. русские ученые М.П. Костенко и П.Л. Капица сделали проект и осуществили первый ударный генератор для создания сильных магнитных полей.

В Томском политехническом институте под руководством и при непосредственном участии Г.А. Сипайлова была создана научная школа в области электромашинного генерирования импульсных мощностей в автономных режимах [6.33, 6.34]. Были проведены многочисленные исследования, разработаны методы расчета и создан ряд импульсных генераторов. К числу оригинальных решений относятся электромашинные генераторы с неявнополюсным шихтованным ротором и импульсной форсировкой возбуждения за счет намагничивания в несимметричных режимах при последовательных коммутациях обмоток статора и ротора.

Принципиально новым направлением являются сверхпроводниковые турбогенераторы, имеющие в 2 раза меньшую массу и потери. Вполне естественно, что вначале создавались опытные сверхпроводниковые машины небольшой мощности (синхронные, униполярные, постоянного тока) [6.35–6.37].

Во ВНИИэлектромаше были созданы следующие сверхпроводниковые машины: коллекторный двигатель постоянного тока мощностью 3 кВт, синхронный генератор мощностью 18 кВт, униполярный генератор с током 10 кА при напряжении 24 В и синхронный генератор мощностью 1200 кВт. Первые четыре машины были созданы под руководством и при непосредственном участии В.Г. Новицкого и В.Н. Шахтарина. В разработку и исполнение двигателя постоянного тока 3 кВт существенный вклад внес также Г.Г. Борзов. Синхронный генератор мощностью 1200 кВт был разработан и выполнен под руководством В.В. Домбровского.

 

Рис. 6.4. Испытательный стенд со сверхпроводниковым турбогенератором мощностью 20 MB∙А (в центре рисунка)

 

Первый генератор средней мощности (20 MB∙А) был создан во ВНИИэлектромаше в 1979 г. (рис. 6.4) [6.38]. Машина была подробно исследована и испытана на стенде института и при работе в Ленэнерго [6.39, 6.40]. Ротор имеет обмотку из ниобий‑титанового сплава. Она охлаждается жидким гелием (4,2 К), который поступает внутрь ротора через неподвижную трубку в центральном отверстии вала. Возврат гелия в газообразном состоянии происходит также через вал. Для защиты сверхпроводящей обмотки от теплопритока из внешней среды ротор имеет три цилиндра, пространство между которыми вакуумировано.

Научно‑исследовательские и опытно‑конструкторские работы во Всесоюзном научно‑исследовательском институте электромеханики (ВНИИЭМ) завершились созданием ряда сверхпроводниковых машин [6.35]. Первая машина имела мощность 600 Вт. Это был генератор со сверхпроводящей обмоткой возбуждения на статоре и трехфазной обмоткой на роторе. Следующей машиной был коллекторный электродвигатель мощностью 25 кВт, а далее генератор переменного тока мощностью 100 кВт со сверхпроводящим индуктором, криодвигатель переменного тока 200 кВт с неподвижным криостатом, модельные синхронные генераторы с вращающимся криостатом, уникальный синхронно‑асинхронный двигатель с передачей вращающего момента без механических сочленений машин. Руководителем, организатором производства и соисполнителем исследований и разработок был Н.Н. Шереметьевский. Основным разработчиком сверхпроводящих индукторов являлся А.С. Веселовский, а якорей – A.M. Рубенраут.

Создателем синхронного сверхпроводникового неявнополюсного генератора мощностью 200 кВт на харьковском заводе «Электротяжмаш» был В.Г. Данько.

В Физико‑техническом институте низких температур (ФТИНТ, г. Харьков) инициатором, организатором и научным руководителем всех работ в области использования явления сверхпроводимости был Б.И. Веркин [6.36]. Существенное значение для исследований, разработок и исполнения машин имели труды Ю.А. Кириченко, А.В. Погорелова и Г.В. Гаврилова.

Во ФТИНТ были созданы: криотурбогенератор мощностью 200 кВт с неподвижной обмоткой возбуждения и теплым вращающимся якорем, турбогенератор мощностью 2 и 3 МВт со сверхпроводниковыми роторами (совместно с объединением «Электросила»). Последние две машины создавались с участием специалистов объединения «Электросила» И.Ф. Филиппова и И.С. Житомирского. Большая работа проведена в области униполярных сверхпроводниковых машин: двигатель с якорем дискового типа мощностью 100 кВт, машина мощностью 150 кВт с цилиндрическим ротором, а затем двигатели мощностью 325 и 850 кВт.

Существенный вклад в теорию и методы расчета электрических машин с использованием явления сверхпроводимости внесли ученые Московского авиационного института А.И. Бертинов, Б.Л. Алиевский, Л.К. Ковалев и др. [6.37].

В генераторе 20 MB∙А внешний цилиндр ротора имеет комнатную температуру, внутренний – температуру жидкого гелия, а средний – 70 К. Обмотка образована рейстрековыми катушками разной ширины и находится при вращении в гелиевой ванне, образованной внутренним цилиндром и торцевыми частями. В связи с очень большой МДС отпадает необходимость в использовании для ротора стали. В этих условиях статор можно делать беспазовым, что увеличивает количество меди и мощность приблизительно в 2 раза. Для малой внешней магнитной индукции в статоре применяется ферромагнитный экран. Исследования, разработка методов расчета и технологических процессов, изготовление и испытания проводились под руководством и при непосредственном участии И.А. Глебова, Я.Б. Данилевича, А.А. Карымова, Л.И. Чубраевой и В.Н. Шахтарина.

И.А. Глебов был научным руководителем, Я.Б. Данилевич – главным конструктором, А.А. Карымов – автором новых методов механических расчетов, Л.И. Чубраева – специалистом, ответственным за изготовление статора и испытания сверхпроводникового турбогенератора в энергосистеме, В.Н. Шахтарин – специалистом, ответственным за разработку и изготовление ротора. Поскольку низкие температуры получаются с помощью криогенной техники, то творческое участие в разработках и испытаниях генератора мощностью 20 MB∙А специалистов НИИ «Гелиймаш» И.П. Вишнева, А.И. Краузе имело очень важное значение.

И.П. Вишнев осуществил разработку и руководство работами по созданию устройств криогенной техники, А.И. Краузе провел наладочные работы и испытания криогенных устройств. Особое значение имело их участие в работах по определению минимальной длительности захолаживания ротора, допустимой по условиям механической прочности его элементов.

Под руководством И.Ф. Филиппова как разработчика методов расчета теплофизических процессов и руководителя работ по созданию уникального криогенного стенда и Г.М. Хуторецкого как главного конструктора в объединении «Электросила» был создан сверхпроводниковый турбогенератор мощностью 300 МВт, и частотой вращения 3000 об/мин. Статор и ротор прошли успешные испытания при температуре жидкого азота. Однако недостаточная газоплотность наружного цилиндра не позволила иметь нужный вакуум и выйти на расчетный режим с жидким гелием.

Сверхпроводниковые турбогенераторы относятся к будущему поколению турбогенераторов. Работы в этом направлении ведутся в ряде стран.

США, государства Западной Европы и Япония имеют существенные успехи в области исследований и разработок сверхпроводниковых электрических машин. Наибольших успехов в области сверхпроводниковых турбогенераторов достигли Япония и США. В ФРГ были созданы основные элементы сверхпроводникового турбогенератора мощностью 800 MB∙А. В Японии имеется национальная программа с конечной задачей завоевания мирового рынка в области турбогенераторостроения на основе использования явления сверхпроводимости. В настоящее время в Японии в стадии изготовления находятся три сверхпроводниковых турбогенератора мощностью по 70 MB∙А каждый. К наибольшим достижениям в области униполярных сверхпроводниковых машин относятся результаты работы английской фирмы IRD (униполярный двигатель мощностью 2,42 МВт).

Проведенный выше обзор в области сверхпроводниковых машин, и в первую очередь турбогенераторов, показывает, что наша страна находится на передовых позициях в мире.

 

6.2.7. ГИДРОГЕНЕРАТОРЫ

 

Создателем первого трехфазного синхронного гидрогенератора мощностью 220 кВт и частотой вращения 150 об/мин в 1891 г. был М.О. Доливо‑Добровольский. Генератор был изготовлен в Швейцарии и установлен на ГЭС в Лауфене; он имел горизонтальный вал и был сочленен с вертикальной гидротурбиной конической зубчатой передачей. В 1900 г. фирма ASEA (Швеция) изготовила шесть гидрогенераторов вертикального исполнения мощностью 200 кВ∙А каждый для ГЭС в г. Вестерос. В 1907 г. эта же фирма поставила в Норвегию самый крупный в мире в то время гидрогенератор мощностью 10 500 кВ∙А.

В СССР первая крупная работа по гидрогенераторам связана с Волховской ГЭС. Четыре гидрогенератора для этой станции под руководством А.Е. Алексеева, Р.А. Лютера и А.С. Шварца по собственным чертежам изготовлял завод «Электросила», параллельно шведская фирма ASEA выполняла четыре аналогичные машины. Мощность каждого генератора равнялась 8750 кВ∙А, наружный диаметр 10 м, масса 250 т. Это были первые машины такого класса в Европе. Наши машины оказались лучше шведских по КПД, нагреву и массе.

Следующим этапом в развитии гидрогенераторостроения явился выпуск гидрогенераторов для Нижнесвирской и Верхнесвирской ГЭС.

Особое значение для производства гидрогенераторов имел уникальный заказ для Днепровской ГЭС: пять машин выполнялись американской фирмой «Дженерал электрик», а четыре – заводом «Электросила». Мощность каждой машины 62 МВт, масса 825 т. Изготовление генераторов было завершено в 1933 г. Под руководством технического директора завода А.Е. Алексеева был произведен разгон первого сварного ротора гидрогенератора до двойной частоты вращения в специально построенном на заводе разгонном устройстве с бетонной ямой. При восстановлении Днепрогэса после войны три генератора были заказаны фирме «Дженерал электрик», а шесть – заводу «Электросила». Использование лучших материалов и технических решений позволило увеличить мощность генератора до 72 МВт.

В послевоенные годы интенсивное строительство ГЭС проводилось в европейской части страны. Особое значение для страны имел каскад Волжских ГЭС. Разработка гидрогенераторов на заводе «Электросила» велась под руководством А.С. Еремеева. В связи с интенсивным развитием гидроэнергетики началось производство машин на заводах «Уралэлектротяжмаш» (г. Свердловск, ныне Екатеринбург), «Сибэлектротяжмаш» (г. Новосибирск) и «Электротяжмаш» (г. Харьков). Здесь необходимо отметить большой творческий вклад главных конструкторов гидрогенераторов указанных заводов: К.Ф. Костина, В.П. Лошкарева («Уралэлектротяжмаш»), B.C. Кильдишева («Электротяжмаш»), А.С. Постникова и Е.Е. Фишкина («Сибэлектротяжмаш»).

Как известно, мощные гидрогенераторы имеют низкие номинальные частоты вращения, и поэтому они превосходят все другие машины по габаритам, массам вращающихся частей и вращающим моментам. Элементы и узлы машин выполняются на заводе, а сборка – на электростанции. Генераторы обычно имеют вертикальное исполнение. В зависимости от расположения подпятника они могут быть зонтичного и подвесного типов. Использование гидроресурсов сибирских рек привело к созданию наиболее мощных ГЭС в мире. К таким относятся Братская, Усть‑Илимская, Красноярская и Саяно‑Шушенская ГЭС, на которых работают гидрогенераторы мощностью соответственно 200, 500 и 640 МВт.

Обычно гидрогенераторы имеют воздушное охлаждение. Однако для машин большой мощности с целью уменьшения их размеров и масс применяется водяное охлаждение обмотки статора и форсированное воздушное охлаждение обмотки ротора. Впервые в мире (1965 г.) водяное охлаждение обмотки статора было применено на гидрогенераторах мощностью 500 МВт и частотой вращения 93,8 об/мин Красноярской ГЭС. В дальнейшем оно было использовано как в более мощных машинах (640 МВт, 142,8 об/мин, Саяно‑Шушенская ГЭС), так и в менее мощных (300 МВт, 200 об/мин, Нурекская ГЭС).

Повышение плотности тока в обмотке статора в связи с водяным охлаждением приводит к необходимости увеличения плотности тока и в обмотке ротора. Для этого требуется интенсивное охлаждение последней, что достигается с помощью форсированного воздушного или водяного охлаждения. В системе форсированного воздушного охлаждения воздух омывает обе боковые поверхности и проходит поперек проводников обмотки. Для этого между сердечником и катушкой делается круговой зазор, куда воздух идет из обода. Из этого зазора воздух поступает через поперечные каналы в межполюсное пространство. Это дает возможность теплового расширения сердечника в процессе эксплуатации. Более совершенный сердечник и новое крепление лобовых частей позволили добиться уникального результата: максимальная вибрация (двойная амплитуда) лобовых частей при номинальном токе статора составила 40 мкм.

Экспериментальные исследования гидрогенераторов Саяно‑Шушенской ГЭС, проведенные Г.В. Карповым, показали, что максимальная длительная мощность генератора равна не расчетной 711 MB∙А, а 820 MB∙А. Следует заметить, что крупнейшие в мире гидрогенераторы ГЭС Итайпу (Бразилия, Парагвай) имеют мощность 823,6 MB∙А. Эти машины созданы фирмами «Броун Бовери» и «Сименс». Таким образом, генераторы Саяно‑Шушенской ГЭС относятся к самым мощным в мире гидрогенераторам (рис. 6.5).

 

Рис. 6.5. Макет гидрогенератора Саяно‑Шушенской ГЭС

 

Разработка и производство гидрогенераторов для сибирских рек потребовали очень больших творческих усилий специалистов объединения «Электросила», работавших под руководством главного конструктора Н.П. Иванова, главного инженера П.М. Ипатова, конструкторов А.А. Дукштау и Ю.А. Дегусарова, а также руководителя расчетов Г.Б. Пинского.

Для применения более интенсивного охлаждения ротора ПО «Уралэлектротяжмаш» на Нурекской ГЭС последний, девятый генератор сделан с полностью водяным охлаждением. Здесь решающее значение имели совместные разработки машин главного конструктора В.П. Лошкарева, главных инженеров А.И. Казанцева и Ю.П. Глазкова.

В гидрогенераторах большой мощности (500 МВт и более) возникают очень большие электромагнитные силы. При обычных способах крепления частей появляются недопустимо высокие вибрации и повреждения обмоток. Такая аварийная ситуация произошла в 1969 г. на Красноярской ГЭС, когда от нагрузок до 300 МВт перешли к нагрузкам 400–500 МВт. Тогда еще не были ясны причины этой ситуации. На электростанции были собраны крупнейшие специалисты страны под руководством министра электротехнической промышленности А.К. Антонова. Причины аварий были найдены и определены пути их устранения. Они заключались в разработке новой системы крепления лобовых частей, улучшении системы водяного охлаждения и отказе от однослойной обмотки. В объединении «Электросила» были проведены исследования генератора, который являлся фактически натуральной моделью. На этой основе удалось найти технические и технологические решения, реализация которых на заводе и ГЭС позволила поднять уровень надежности гидрогенераторов.

К числу новых решений для улучшения вибрационных характеристик относится сборка сердечника статора на месте установки. Обычная конструкция статора из секторов создавала определенные трудности, связанные с их стыками. Поэтому сборка в кольцо была использована на самых мощных машинах – генераторах Саяно‑Шушенской ГЭС.

Подпятник в гидрогенераторе является наиболее ответственным узлом. На протяжении десятилетий совершенствовались теория и расчет подпятников. Тем не менее этот узел очень труден для наладки и эксплуатации. В нашей стране и за рубежом применяются сегменты подпятника, состоящие из стальной основы и баббитового покрытия. Казалось, трудно было предложить что‑то новое, более совершенное в этой хорошо освоенной области. И все‑таки это оказалось возможным.

Крупным достижением отечественного гидрогенераторостроения явилось применение сегментов подпятника, облицованных фторопластом вместо баббита, которые разработал и внедрил Ю.Н. Байбородов. Сегмент такого типа, получивший название эластичного металлопластмассового (ЭМП) сегмента, состоит из стального основания и антифрикционного элемента. Антифрикционный элемент, образованный из опрессованной бронзовой проволоки с нанесенным на нее покрытием из фторопласта Ф4 толщиной 1,5–2,5 мм, припаивается к стальному основанию оловянным припоем. ЭМП сегменты характеризуются высокими противозадирными свойствами, при этом обеспечивается пуск без подачи масла под давлением. Генератор с такими сегментами может работать при самых малых скоростях. Удельное давление в подпятнике по данным испытаний на Братской ГЭС может быть доведено до 10 МПа. В настоящее время все гидрогенераторы страны выпускаются с такими подпятниками.

Следует обратить внимание еще на один этап в развитии гидрогенераторостроения. Для обеспечения необходимого уровня устойчивости работы дальних электропередач (от Волги до Москвы) потребовалось уменьшение индуктивных сопротивлений. Так как активный объем машины обратно пропорционален корню квадратному из синхронного сопротивления обмотки якоря, то гидрогенераторы были сделаны с повышенными массами. В дальнейшем работы ВНИИэлектромаша (И.А. Глебов, В.Е. Каштелян, Н.С. Сирый) и других организаций показали, что проблема устойчивости решается с помощью быстродействующей системы возбуждения, имеющей повышенную кратность форсирования и автоматическое регулирование возбуждения (АРВ) сильного действия. Поэтому при сооружении ГЭС на сибирских реках гидрогенераторы выполнялись не с уменьшенными, а с нормальными параметрами, не требующими увеличения массогабаритных показателей.

Гидрогенераторы вертикального исполнения для гидроаккумулирующих электростанций работают как в генераторном, так и в двигательном режимах. В последнем случае возникает проблема их пуска. Существует несколько способов. Один из них – использование преобразователя частоты со звеном постоянного тока. Частота изменяется от нулевой до промышленной. Такой преобразователь мощностью 10 МВт был выполнен во ВНИИэлектромаше (В.Н. Левин) и поставлен на Загорскую ГАЭС для пуска агрегатов 200 МВт.








Дата добавления: 2016-01-30; просмотров: 2010;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.