Р1 – масса угледержателя; Р2 – масса сердечника электромагнита; 1 – угли; 2 – последовательная обмотка; 3 – параллельная обмотка
По характеру электрической схемы питания регуляторы разделяли на три группы: с последовательным и параллельным питанием, дифференциальные (рис. 2.26). В регуляторах с последовательным питанием обмотка электромагнита включалась последовательно с дугой, а с параллельным – параллельно. В дифференциальном регуляторе горение дуги регулировалось как последовательной, так и параллельной обмотками. После включения лампы регулятор работал при любом положении углей. Электромагнитные регуляторы в дуговых электрических лампах, обеспечивающие автоматическое регулирование расстояния между электродами дуги, были самыми распространенными электрическими устройствами в 50–70‑х годах XIX в. До появления свечи Яблочкова в 1876 г. электромагнитный регулятор являлся наиболее важным конструктивным узлом дуговых ламп, без которого последние не могли работать. Большинство дуговых ламп различалось только устройством регулятора.
Рис. 2.27. Дуговая лампа Чиколева с электромашинным регулятором
Наиболее совершенные дифференциальные регуляторы были разработаны в 1869–1870 гг. известным русским электротехником, одним из основателей журнала «Электричество» Владимиром Николаевичем Чиколевым (1845–1898 гг.). Им впервые в мировой электротехнической практике был применен метод электромашинного регулирования. На рис. 2.27 показана дуговая лампас электромашинным регулятором. Последовательная и параллельная обмотки регулятора служили обмотками возбуждения двигателя 3, 4. Действие электромагнитов было встречным: при сгорании углей 1 усиливалось действие параллельной обмотки, якорь 5 вращал
вал 2 в одну сторону и угли сближались. При чрезмерном сближении углей усиливалось действие последовательной обмотки, угли раздвигались.
Идея дифференциального регулятора, получившего широкое применение в прожекторостроении, была использована другими конструкторами, в частности немецким фабрикантом З. Шуккертом. Крупносерийный выпуск дуговых ламп с дифференциальным регулятором был налажен в конце 70‑х годов на заводах В. Сименса (с которыми объединялись заводы 3. Шуккерта), и такая лампа стала продаваться под именем «дуговая лампа Сименса».
С 80‑х годов дуговые лампы с дифференциальным регулятором стали единственным типом дуговых источников света, которые применялись для освещения улиц, площадей, гаваней, а также для освещения больших помещений производственного и общественного назначения; они стали традиционными источниками света в прожекторной и светопроекционной технике.
Самая первая лампа накаливания была построена английским физиком У. Деларю (1819–1889 гг.). В этой лампе накаливалась платиновая спираль, находящаяся в стеклянной трубке.
Следующий шаг был сделан в 1838 г., когда бельгиец Жобар стал накаливать угольные стержни в разреженном пространстве. Эта лампа была, конечно, дешевле, но срок ее службы был незначительным.
После 1840 г. были предложены многочисленные конструкции ламп накаливания: с телом накала из платины, иридия, угля или графита и т.д.
В 1854 г. по улицам Нью‑Йорка разъезжал немецкий эмигрант Генрих Гебель (1818–1893 гг.), на повозке которого находилась подзорная труба и лампа накаливания. Последняя служила для привлечения публики, которая приглашалась взглянуть через подзорную трубу на кольца Сатурна. Замечательным было то, что телом накала в лампе Гебеля служило обугленное бамбуковое волокно; нить была помещена в верхнюю часть закрытой барометрической трубки, т.е. в разреженное пространство. Медные проводники подходили к нити накала сквозь стекло. Лампа Гебеля могла гореть в течение нескольких часов.
В 1860 г. Джон В. Сван (1828–1914 гг.) в Англии впервые применил для лампы накаливания обугленные полоски толстой бумаги или бристольского картона, накаливавшиеся в вакууме.
Дальнейшее развитие электрического освещения будет рассмотрено в следующей, третьей главе.
СПИСОК ЛИТЕРАТУРЫ
2.1. Петров В.В. Известие о гальвани‑вольтовских опытах. СПб., 1803.
2.2. Шнейберг Я.А. Василий Владимирович Петров. М.: Наука, 1985.
2.3. Ампер А. Электродинамика. М.: Изд‑во АН СССР, 1954.
2.4. Кошманов В.В. Георг Ом. М.: Просвещение, 1980.
2.5. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1958.
2.6. Фарадей М. Экспериментальные исследования по электричеству. М.: Изд‑во АН СССР, 1947.
2.7. Цверава Г.К. Джозеф Генри. Л.: Наука, 1983.
2.8. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1934.
2.9. Ленц Э.Х. Избранные труды. М.: Изд‑во АН СССР, 1950.
2.10. Лежнева О.А., Ржонсницкий Б.Н. Эмилий Христианович Ленц. М. – Л.: Госэнергоиздат, 1952.
2.11. Майер Р. Закон сохранения и превращения энергии. М.: Гостехиздат, 1933.
2.12. Бернал Дж. Наука в истории общества. М.: Изд. иностр. лит., 1956.
2.13. Электродвигатель в его историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд‑во АН СССР, 1936.
2.14. Яроцкий А.В. Борис Семенович Якоби. М.: Наука, 1988.
2.15. Гусев С.А. Очерки по истории электрических машин. М.: Госэнергоиздат, 1955.
2.16. Динамомашина в ее историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд‑во АН СССР, 1934.
2.17. Цверава Г.К. Аньош Йедлик. Л.: Наука, 1972.
2.18. Яроцкий А.В. Павел Львович Шиллинг. М.: Изд‑во АН СССР, 1963.
2.19. Храмой А.В. Константин Иванович Константинов. М.: Госэнергоиздат, 1951.
2.20. Шателен М.А. Русские электротехники XIX в. М.: Госэнергоиздат, 1955.
Глава 3.
СТАНОВЛЕНИЕ ЭЛЕКТРОТЕХНИКИ КАК САМОСТОЯТЕЛЬНОЙ ОТРАСЛИ ТЕХНИКИ (1870–1890 гг.)
Электротехнические устройства не выходили за пределы лабораторий, пока не было у массового потребителя достаточно мощного и экономичного источника электрической энергии. В 1870 г. такой источник был создан. Следующие за этой датой 15–20 лет прошли как годы зарождения основных электротехнических устройств массового промышленного и бытового назначения, как годы становления новой отрасли техники. Это был поистине героический период истории электротехники.
Дата добавления: 2016-01-30; просмотров: 974;