Способ концентрических сфер
Этот способ широко используется при решении задач на построение линий пересечения поверхностей вращения с пересекающимися осями. В основе этого способа лежит следующее свойство поверхностей вращения: две соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения их полумеридианов. Эти окружности лежат в плоскостях, перпендикулярных оси поверхностей вращения. У сферы любой диаметр можно принять за ось вращения. Следовательно, сфера с центром на оси поверхности вращения пересекает эту поверхность по одной или нескольким окружностям.
а б в
Рис. 53 Пересечение соосных поверхностей вращения
Рассмотрим применение вспомогательных концентрических сфер − сфер с постоянным центром. Этот способ применяют при выполнении следующих условий:
а) пересекающиеся поверхности должны быть поверхностями вращения;
б) оси этих поверхностей должны пересекаться; точку их пересечения принимают за центр вспомогательных сфер;
в) плоскость симметрии поверхностей должна быть параллельна какой-либо плоскости проекций (в противном случае применяют преобразование чертежа).
Рассмотрим построение линии пересечения конических поверхностей вращения (рис. 54). Поверхности и их расположение удовлетворяют приведенным выше условиям.
Прежде чем строить промежуточные точки, необходимо найти опорные точки линии пересечения. Точки А, В, K и L, а также E, F, С и D – это точки, принадлежащие контурам поверхностей. Их можно найти способом концентрических сфер или с помощью плоскостей посредников Σ(Σ2) и Δ(Δ1).
Рассмотрим теперь построение промежуточных точек на примере точек 5 и 6. Построения выполняем на фронтальной плоскости проекций. Сфера посредник Θ(Θ2) с центром в точке О(О2) пересекает конические поверхности по окружностям, которые на П2 проецируются в отрезки и (проекции двух других окружностей не показаны). Точки 52 = 62 их пересечения являются фронтальными проекциями точек 5 и 6, которые принадлежат линии пересечения поверхностей, так как принадлежат каждой из этих поверхностей.
Аналогично можно построить любое количество точек искомой линии пересечения. Однако нужно иметь в виду, что не все сферы могут быть использованы для решения задачи.
Рис. 54 Применение способа вспомогательных концентрических сфер
Радиус максимальной сферы равен расстоянию от точки пересечения осей поверхностей до самой удаленной точки пересечения контурных образующих этих поверхностей. На рис 54 – сфера Rmax =[O2L2].
Для установления видимости проекций линии пересечения анализируем расположение точек относительно контуров поверхностей. Так, относительно П1, видимым будет участок кривой, расположенный выше контура горизонтальной конической поверхности (вторая поверхность на видимость на П1 не влияет). Горизонтальная проекция невидимой части линии показана штриховой линией.
Точки А, В и K, L принадлежат фронтальным контурам поверхностей и отделяют видимую часть линии пересечения от невидимой при проецировании на П2. Фронтальные проекции видимой и невидимой частей линии пересечения на рис. 54 совпадают.
Дата добавления: 2016-01-29; просмотров: 3849;